Description: A relation is a set iff its converse is a set. (Contributed by FL, 3-Mar-2007)
Ref | Expression | ||
---|---|---|---|
Assertion | relcnvexb | ⊢ ( Rel 𝑅 → ( 𝑅 ∈ V ↔ ◡ 𝑅 ∈ V ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvexg | ⊢ ( 𝑅 ∈ V → ◡ 𝑅 ∈ V ) | |
2 | dfrel2 | ⊢ ( Rel 𝑅 ↔ ◡ ◡ 𝑅 = 𝑅 ) | |
3 | cnvexg | ⊢ ( ◡ 𝑅 ∈ V → ◡ ◡ 𝑅 ∈ V ) | |
4 | eleq1 | ⊢ ( ◡ ◡ 𝑅 = 𝑅 → ( ◡ ◡ 𝑅 ∈ V ↔ 𝑅 ∈ V ) ) | |
5 | 3 4 | syl5ib | ⊢ ( ◡ ◡ 𝑅 = 𝑅 → ( ◡ 𝑅 ∈ V → 𝑅 ∈ V ) ) |
6 | 2 5 | sylbi | ⊢ ( Rel 𝑅 → ( ◡ 𝑅 ∈ V → 𝑅 ∈ V ) ) |
7 | 1 6 | impbid2 | ⊢ ( Rel 𝑅 → ( 𝑅 ∈ V ↔ ◡ 𝑅 ∈ V ) ) |