Metamath Proof Explorer


Theorem relcnvtr

Description: A relation is transitive iff its converse is transitive. (Contributed by FL, 19-Sep-2011) (Proof shortened by Peter Mazsa, 17-Oct-2023)

Ref Expression
Assertion relcnvtr ( Rel 𝑅 → ( ( 𝑅𝑅 ) ⊆ 𝑅 ↔ ( 𝑅 𝑅 ) ⊆ 𝑅 ) )

Proof

Step Hyp Ref Expression
1 3anidm ( ( Rel 𝑅 ∧ Rel 𝑅 ∧ Rel 𝑅 ) ↔ Rel 𝑅 )
2 relcnvtrg ( ( Rel 𝑅 ∧ Rel 𝑅 ∧ Rel 𝑅 ) → ( ( 𝑅𝑅 ) ⊆ 𝑅 ↔ ( 𝑅 𝑅 ) ⊆ 𝑅 ) )
3 1 2 sylbir ( Rel 𝑅 → ( ( 𝑅𝑅 ) ⊆ 𝑅 ↔ ( 𝑅 𝑅 ) ⊆ 𝑅 ) )