Metamath Proof Explorer


Theorem relcnvtrg

Description: General form of relcnvtr . (Contributed by Peter Mazsa, 17-Oct-2023)

Ref Expression
Assertion relcnvtrg ( ( Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇 ) → ( ( 𝑅𝑆 ) ⊆ 𝑇 ↔ ( 𝑆 𝑅 ) ⊆ 𝑇 ) )

Proof

Step Hyp Ref Expression
1 cnvco ( 𝑅𝑆 ) = ( 𝑆 𝑅 )
2 cnvss ( ( 𝑅𝑆 ) ⊆ 𝑇 ( 𝑅𝑆 ) ⊆ 𝑇 )
3 1 2 eqsstrrid ( ( 𝑅𝑆 ) ⊆ 𝑇 → ( 𝑆 𝑅 ) ⊆ 𝑇 )
4 cnvco ( 𝑆 𝑅 ) = ( 𝑅 𝑆 )
5 cnvss ( ( 𝑆 𝑅 ) ⊆ 𝑇 ( 𝑆 𝑅 ) ⊆ 𝑇 )
6 sseq1 ( ( 𝑆 𝑅 ) = ( 𝑅 𝑆 ) → ( ( 𝑆 𝑅 ) ⊆ 𝑇 ↔ ( 𝑅 𝑆 ) ⊆ 𝑇 ) )
7 dfrel2 ( Rel 𝑅 𝑅 = 𝑅 )
8 7 biimpi ( Rel 𝑅 𝑅 = 𝑅 )
9 8 3ad2ant1 ( ( Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇 ) → 𝑅 = 𝑅 )
10 dfrel2 ( Rel 𝑆 𝑆 = 𝑆 )
11 10 biimpi ( Rel 𝑆 𝑆 = 𝑆 )
12 11 3ad2ant2 ( ( Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇 ) → 𝑆 = 𝑆 )
13 9 12 coeq12d ( ( Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇 ) → ( 𝑅 𝑆 ) = ( 𝑅𝑆 ) )
14 dfrel2 ( Rel 𝑇 𝑇 = 𝑇 )
15 14 biimpi ( Rel 𝑇 𝑇 = 𝑇 )
16 15 3ad2ant3 ( ( Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇 ) → 𝑇 = 𝑇 )
17 13 16 sseq12d ( ( Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇 ) → ( ( 𝑅 𝑆 ) ⊆ 𝑇 ↔ ( 𝑅𝑆 ) ⊆ 𝑇 ) )
18 17 biimpcd ( ( 𝑅 𝑆 ) ⊆ 𝑇 → ( ( Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇 ) → ( 𝑅𝑆 ) ⊆ 𝑇 ) )
19 6 18 syl6bi ( ( 𝑆 𝑅 ) = ( 𝑅 𝑆 ) → ( ( 𝑆 𝑅 ) ⊆ 𝑇 → ( ( Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇 ) → ( 𝑅𝑆 ) ⊆ 𝑇 ) ) )
20 4 5 19 mpsyl ( ( 𝑆 𝑅 ) ⊆ 𝑇 → ( ( Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇 ) → ( 𝑅𝑆 ) ⊆ 𝑇 ) )
21 20 com12 ( ( Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇 ) → ( ( 𝑆 𝑅 ) ⊆ 𝑇 → ( 𝑅𝑆 ) ⊆ 𝑇 ) )
22 3 21 impbid2 ( ( Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇 ) → ( ( 𝑅𝑆 ) ⊆ 𝑇 ↔ ( 𝑆 𝑅 ) ⊆ 𝑇 ) )