Step |
Hyp |
Ref |
Expression |
1 |
|
cnvco |
⊢ ◡ ( 𝑅 ∘ 𝑆 ) = ( ◡ 𝑆 ∘ ◡ 𝑅 ) |
2 |
|
cnvss |
⊢ ( ( 𝑅 ∘ 𝑆 ) ⊆ 𝑇 → ◡ ( 𝑅 ∘ 𝑆 ) ⊆ ◡ 𝑇 ) |
3 |
1 2
|
eqsstrrid |
⊢ ( ( 𝑅 ∘ 𝑆 ) ⊆ 𝑇 → ( ◡ 𝑆 ∘ ◡ 𝑅 ) ⊆ ◡ 𝑇 ) |
4 |
|
cnvco |
⊢ ◡ ( ◡ 𝑆 ∘ ◡ 𝑅 ) = ( ◡ ◡ 𝑅 ∘ ◡ ◡ 𝑆 ) |
5 |
|
cnvss |
⊢ ( ( ◡ 𝑆 ∘ ◡ 𝑅 ) ⊆ ◡ 𝑇 → ◡ ( ◡ 𝑆 ∘ ◡ 𝑅 ) ⊆ ◡ ◡ 𝑇 ) |
6 |
|
sseq1 |
⊢ ( ◡ ( ◡ 𝑆 ∘ ◡ 𝑅 ) = ( ◡ ◡ 𝑅 ∘ ◡ ◡ 𝑆 ) → ( ◡ ( ◡ 𝑆 ∘ ◡ 𝑅 ) ⊆ ◡ ◡ 𝑇 ↔ ( ◡ ◡ 𝑅 ∘ ◡ ◡ 𝑆 ) ⊆ ◡ ◡ 𝑇 ) ) |
7 |
|
dfrel2 |
⊢ ( Rel 𝑅 ↔ ◡ ◡ 𝑅 = 𝑅 ) |
8 |
7
|
biimpi |
⊢ ( Rel 𝑅 → ◡ ◡ 𝑅 = 𝑅 ) |
9 |
8
|
3ad2ant1 |
⊢ ( ( Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇 ) → ◡ ◡ 𝑅 = 𝑅 ) |
10 |
|
dfrel2 |
⊢ ( Rel 𝑆 ↔ ◡ ◡ 𝑆 = 𝑆 ) |
11 |
10
|
biimpi |
⊢ ( Rel 𝑆 → ◡ ◡ 𝑆 = 𝑆 ) |
12 |
11
|
3ad2ant2 |
⊢ ( ( Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇 ) → ◡ ◡ 𝑆 = 𝑆 ) |
13 |
9 12
|
coeq12d |
⊢ ( ( Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇 ) → ( ◡ ◡ 𝑅 ∘ ◡ ◡ 𝑆 ) = ( 𝑅 ∘ 𝑆 ) ) |
14 |
|
dfrel2 |
⊢ ( Rel 𝑇 ↔ ◡ ◡ 𝑇 = 𝑇 ) |
15 |
14
|
biimpi |
⊢ ( Rel 𝑇 → ◡ ◡ 𝑇 = 𝑇 ) |
16 |
15
|
3ad2ant3 |
⊢ ( ( Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇 ) → ◡ ◡ 𝑇 = 𝑇 ) |
17 |
13 16
|
sseq12d |
⊢ ( ( Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇 ) → ( ( ◡ ◡ 𝑅 ∘ ◡ ◡ 𝑆 ) ⊆ ◡ ◡ 𝑇 ↔ ( 𝑅 ∘ 𝑆 ) ⊆ 𝑇 ) ) |
18 |
17
|
biimpcd |
⊢ ( ( ◡ ◡ 𝑅 ∘ ◡ ◡ 𝑆 ) ⊆ ◡ ◡ 𝑇 → ( ( Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇 ) → ( 𝑅 ∘ 𝑆 ) ⊆ 𝑇 ) ) |
19 |
6 18
|
syl6bi |
⊢ ( ◡ ( ◡ 𝑆 ∘ ◡ 𝑅 ) = ( ◡ ◡ 𝑅 ∘ ◡ ◡ 𝑆 ) → ( ◡ ( ◡ 𝑆 ∘ ◡ 𝑅 ) ⊆ ◡ ◡ 𝑇 → ( ( Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇 ) → ( 𝑅 ∘ 𝑆 ) ⊆ 𝑇 ) ) ) |
20 |
4 5 19
|
mpsyl |
⊢ ( ( ◡ 𝑆 ∘ ◡ 𝑅 ) ⊆ ◡ 𝑇 → ( ( Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇 ) → ( 𝑅 ∘ 𝑆 ) ⊆ 𝑇 ) ) |
21 |
20
|
com12 |
⊢ ( ( Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇 ) → ( ( ◡ 𝑆 ∘ ◡ 𝑅 ) ⊆ ◡ 𝑇 → ( 𝑅 ∘ 𝑆 ) ⊆ 𝑇 ) ) |
22 |
3 21
|
impbid2 |
⊢ ( ( Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇 ) → ( ( 𝑅 ∘ 𝑆 ) ⊆ 𝑇 ↔ ( ◡ 𝑆 ∘ ◡ 𝑅 ) ⊆ ◡ 𝑇 ) ) |