Step |
Hyp |
Ref |
Expression |
1 |
|
dfss2 |
⊢ ( 𝐴 ⊆ 𝐶 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ) |
2 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
3 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐶 ↔ 𝑦 ∈ 𝐶 ) ) |
4 |
2 3
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ↔ ( 𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐶 ) ) ) |
5 |
4
|
spw |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ) |
6 |
|
pm5.44 |
⊢ ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) → ( ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵 ) ) ) ) |
7 |
|
eldif |
⊢ ( 𝑥 ∈ ( 𝐶 ∖ 𝐵 ) ↔ ( 𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵 ) ) |
8 |
7
|
imbi2i |
⊢ ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝐶 ∖ 𝐵 ) ) ↔ ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵 ) ) ) |
9 |
6 8
|
bitr4di |
⊢ ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) → ( ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝐶 ∖ 𝐵 ) ) ) ) |
10 |
5 9
|
syl |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) → ( ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝐶 ∖ 𝐵 ) ) ) ) |
11 |
1 10
|
sylbi |
⊢ ( 𝐴 ⊆ 𝐶 → ( ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝐶 ∖ 𝐵 ) ) ) ) |
12 |
11
|
albidv |
⊢ ( 𝐴 ⊆ 𝐶 → ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝐶 ∖ 𝐵 ) ) ) ) |
13 |
|
disj1 |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ) |
14 |
|
dfss2 |
⊢ ( 𝐴 ⊆ ( 𝐶 ∖ 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝐶 ∖ 𝐵 ) ) ) |
15 |
12 13 14
|
3bitr4g |
⊢ ( 𝐴 ⊆ 𝐶 → ( ( 𝐴 ∩ 𝐵 ) = ∅ ↔ 𝐴 ⊆ ( 𝐶 ∖ 𝐵 ) ) ) |