Metamath Proof Explorer


Theorem reldisj

Description: Two ways of saying that two classes are disjoint, using the complement of B relative to a universe C . (Contributed by NM, 15-Feb-2007) (Proof shortened by Andrew Salmon, 26-Jun-2011) Avoid ax-12 . (Revised by Gino Giotto, 28-Jun-2024)

Ref Expression
Assertion reldisj ( 𝐴𝐶 → ( ( 𝐴𝐵 ) = ∅ ↔ 𝐴 ⊆ ( 𝐶𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 dfss2 ( 𝐴𝐶 ↔ ∀ 𝑥 ( 𝑥𝐴𝑥𝐶 ) )
2 eleq1w ( 𝑥 = 𝑦 → ( 𝑥𝐴𝑦𝐴 ) )
3 eleq1w ( 𝑥 = 𝑦 → ( 𝑥𝐶𝑦𝐶 ) )
4 2 3 imbi12d ( 𝑥 = 𝑦 → ( ( 𝑥𝐴𝑥𝐶 ) ↔ ( 𝑦𝐴𝑦𝐶 ) ) )
5 4 spw ( ∀ 𝑥 ( 𝑥𝐴𝑥𝐶 ) → ( 𝑥𝐴𝑥𝐶 ) )
6 pm5.44 ( ( 𝑥𝐴𝑥𝐶 ) → ( ( 𝑥𝐴 → ¬ 𝑥𝐵 ) ↔ ( 𝑥𝐴 → ( 𝑥𝐶 ∧ ¬ 𝑥𝐵 ) ) ) )
7 eldif ( 𝑥 ∈ ( 𝐶𝐵 ) ↔ ( 𝑥𝐶 ∧ ¬ 𝑥𝐵 ) )
8 7 imbi2i ( ( 𝑥𝐴𝑥 ∈ ( 𝐶𝐵 ) ) ↔ ( 𝑥𝐴 → ( 𝑥𝐶 ∧ ¬ 𝑥𝐵 ) ) )
9 6 8 bitr4di ( ( 𝑥𝐴𝑥𝐶 ) → ( ( 𝑥𝐴 → ¬ 𝑥𝐵 ) ↔ ( 𝑥𝐴𝑥 ∈ ( 𝐶𝐵 ) ) ) )
10 5 9 syl ( ∀ 𝑥 ( 𝑥𝐴𝑥𝐶 ) → ( ( 𝑥𝐴 → ¬ 𝑥𝐵 ) ↔ ( 𝑥𝐴𝑥 ∈ ( 𝐶𝐵 ) ) ) )
11 1 10 sylbi ( 𝐴𝐶 → ( ( 𝑥𝐴 → ¬ 𝑥𝐵 ) ↔ ( 𝑥𝐴𝑥 ∈ ( 𝐶𝐵 ) ) ) )
12 11 albidv ( 𝐴𝐶 → ( ∀ 𝑥 ( 𝑥𝐴 → ¬ 𝑥𝐵 ) ↔ ∀ 𝑥 ( 𝑥𝐴𝑥 ∈ ( 𝐶𝐵 ) ) ) )
13 disj1 ( ( 𝐴𝐵 ) = ∅ ↔ ∀ 𝑥 ( 𝑥𝐴 → ¬ 𝑥𝐵 ) )
14 dfss2 ( 𝐴 ⊆ ( 𝐶𝐵 ) ↔ ∀ 𝑥 ( 𝑥𝐴𝑥 ∈ ( 𝐶𝐵 ) ) )
15 12 13 14 3bitr4g ( 𝐴𝐶 → ( ( 𝐴𝐵 ) = ∅ ↔ 𝐴 ⊆ ( 𝐶𝐵 ) ) )