Metamath Proof Explorer


Theorem reldmdsmm

Description: The direct sum is a well-behaved binary operator. (Contributed by Stefan O'Rear, 7-Jan-2015)

Ref Expression
Assertion reldmdsmm Rel dom ⊕m

Proof

Step Hyp Ref Expression
1 df-dsmm m = ( 𝑠 ∈ V , 𝑟 ∈ V ↦ ( ( 𝑠 Xs 𝑟 ) ↾s { 𝑓X 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟𝑥 ) ) ∣ { 𝑥 ∈ dom 𝑟 ∣ ( 𝑓𝑥 ) ≠ ( 0g ‘ ( 𝑟𝑥 ) ) } ∈ Fin } ) )
2 1 reldmmpo Rel dom ⊕m