Metamath Proof Explorer


Theorem reldmevls

Description: Well-behaved binary operation property of evalSub . (Contributed by Stefan O'Rear, 19-Mar-2015)

Ref Expression
Assertion reldmevls Rel dom evalSub

Proof

Step Hyp Ref Expression
1 df-evls evalSub = ( 𝑖 ∈ V , 𝑠 ∈ CRing ↦ ( Base ‘ 𝑠 ) / 𝑏 ( 𝑟 ∈ ( SubRing ‘ 𝑠 ) ↦ ( 𝑖 mPoly ( 𝑠s 𝑟 ) ) / 𝑤 ( 𝑓 ∈ ( 𝑤 RingHom ( 𝑠s ( 𝑏m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥𝑟 ↦ ( ( 𝑏m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠s 𝑟 ) ) ) = ( 𝑥𝑖 ↦ ( 𝑔 ∈ ( 𝑏m 𝑖 ) ↦ ( 𝑔𝑥 ) ) ) ) ) ) )
2 1 reldmmpo Rel dom evalSub