Metamath Proof Explorer


Theorem reldmevls1

Description: Well-behaved binary operation property of evalSub1 . (Contributed by AV, 7-Sep-2019)

Ref Expression
Assertion reldmevls1 Rel dom evalSub1

Proof

Step Hyp Ref Expression
1 df-evls1 evalSub1 = ( 𝑠 ∈ V , 𝑟 ∈ 𝒫 ( Base ‘ 𝑠 ) ↦ ( Base ‘ 𝑠 ) / 𝑏 ( ( 𝑥 ∈ ( 𝑏m ( 𝑏m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦𝑏 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑠 ) ‘ 𝑟 ) ) )
2 1 reldmmpo Rel dom evalSub1