Metamath Proof Explorer


Theorem reldmghm

Description: Lemma for group homomorphisms. (Contributed by Stefan O'Rear, 31-Dec-2014)

Ref Expression
Assertion reldmghm Rel dom GrpHom

Proof

Step Hyp Ref Expression
1 df-ghm GrpHom = ( 𝑠 ∈ Grp , 𝑡 ∈ Grp ↦ { 𝑔[ ( Base ‘ 𝑠 ) / 𝑤 ] ( 𝑔 : 𝑤 ⟶ ( Base ‘ 𝑡 ) ∧ ∀ 𝑥𝑤𝑦𝑤 ( 𝑔 ‘ ( 𝑥 ( +g𝑠 ) 𝑦 ) ) = ( ( 𝑔𝑥 ) ( +g𝑡 ) ( 𝑔𝑦 ) ) ) } )
2 1 reldmmpo Rel dom GrpHom