Description: Lemma for group homomorphisms. (Contributed by Stefan O'Rear, 31-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reldmghm | ⊢ Rel dom GrpHom | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-ghm | ⊢ GrpHom = ( 𝑠 ∈ Grp , 𝑡 ∈ Grp ↦ { 𝑔 ∣ [ ( Base ‘ 𝑠 ) / 𝑤 ] ( 𝑔 : 𝑤 ⟶ ( Base ‘ 𝑡 ) ∧ ∀ 𝑥 ∈ 𝑤 ∀ 𝑦 ∈ 𝑤 ( 𝑔 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑔 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑔 ‘ 𝑦 ) ) ) } ) | |
| 2 | 1 | reldmmpo | ⊢ Rel dom GrpHom |