Metamath Proof Explorer


Theorem reldmmdeg

Description: Multivariate degree is a binary operation. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Assertion reldmmdeg Rel dom mDeg

Proof

Step Hyp Ref Expression
1 df-mdeg mDeg = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( 𝑓 ∈ ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) ↦ sup ( ran ( ∈ ( 𝑓 supp ( 0g𝑟 ) ) ↦ ( ℂfld Σg ) ) , ℝ* , < ) ) )
2 1 reldmmpo Rel dom mDeg