Metamath Proof Explorer


Theorem reldmmhp

Description: The domain of the homogeneous polynomial operator is a relation. (Contributed by SN, 18-May-2025)

Ref Expression
Assertion reldmmhp Rel dom mHomP

Proof

Step Hyp Ref Expression
1 df-mhp mHomP = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) ∣ ( 𝑓 supp ( 0g𝑟 ) ) ⊆ { 𝑔 ∈ { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑛 } } ) )
2 1 reldmmpo Rel dom mHomP