Metamath Proof Explorer


Theorem reldmnghm

Description: Lemma for normed group homomorphisms. (Contributed by Mario Carneiro, 18-Oct-2015)

Ref Expression
Assertion reldmnghm Rel dom NGHom

Proof

Step Hyp Ref Expression
1 df-nghm NGHom = ( 𝑠 ∈ NrmGrp , 𝑡 ∈ NrmGrp ↦ ( ( 𝑠 normOp 𝑡 ) “ ℝ ) )
2 1 reldmmpo Rel dom NGHom