Metamath Proof Explorer


Theorem reldmnmhm

Description: Lemma for module homomorphisms. (Contributed by Mario Carneiro, 18-Oct-2015)

Ref Expression
Assertion reldmnmhm Rel dom NMHom

Proof

Step Hyp Ref Expression
1 df-nmhm NMHom = ( 𝑠 ∈ NrmMod , 𝑡 ∈ NrmMod ↦ ( ( 𝑠 LMHom 𝑡 ) ∩ ( 𝑠 NGHom 𝑡 ) ) )
2 1 reldmmpo Rel dom NMHom