Metamath Proof Explorer


Theorem reldmoprab

Description: The domain of an operation class abstraction is a relation. (Contributed by NM, 17-Mar-1995)

Ref Expression
Assertion reldmoprab Rel dom { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜑 }

Proof

Step Hyp Ref Expression
1 dmoprab dom { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜑 } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑧 𝜑 }
2 1 relopabiv Rel dom { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜑 }