Description: Lemma for ordered power series. (Contributed by Stefan O'Rear, 2-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | reldmopsr | ⊢ Rel dom ordPwSer |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-opsr | ⊢ ordPwSer = ( 𝑖 ∈ V , 𝑠 ∈ V ↦ ( 𝑟 ∈ 𝒫 ( 𝑖 × 𝑖 ) ↦ ⦋ ( 𝑖 mPwSer 𝑠 ) / 𝑝 ⦌ ( 𝑝 sSet 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑝 ) ∧ ( [ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ] ∃ 𝑧 ∈ 𝑑 ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } 〉 ) ) ) | |
2 | 1 | reldmmpo | ⊢ Rel dom ordPwSer |