Metamath Proof Explorer


Theorem reldmopsr

Description: Lemma for ordered power series. (Contributed by Stefan O'Rear, 2-Oct-2015)

Ref Expression
Assertion reldmopsr Rel dom ordPwSer

Proof

Step Hyp Ref Expression
1 df-opsr ordPwSer = ( 𝑖 ∈ V , 𝑠 ∈ V ↦ ( 𝑟 ∈ 𝒫 ( 𝑖 × 𝑖 ) ↦ ( 𝑖 mPwSer 𝑠 ) / 𝑝 ( 𝑝 sSet ⟨ ( le ‘ ndx ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑝 ) ∧ ( [ { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin } / 𝑑 ]𝑧𝑑 ( ( 𝑥𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦𝑧 ) ∧ ∀ 𝑤𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } ⟩ ) ) )
2 1 reldmmpo Rel dom ordPwSer