Metamath Proof Explorer


Theorem reldmprds

Description: The structure product is a well-behaved binary operator. (Contributed by Stefan O'Rear, 7-Jan-2015) (Revised by Thierry Arnoux, 15-Jun-2019) (Revised by Zhi Wang, 18-Aug-2024)

Ref Expression
Assertion reldmprds Rel dom Xs

Proof

Step Hyp Ref Expression
1 df-prds Xs = ( 𝑠 ∈ V , 𝑟 ∈ V ↦ X 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟𝑥 ) ) / 𝑣 ( 𝑓𝑣 , 𝑔𝑣X 𝑥 ∈ dom 𝑟 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑟𝑥 ) ) ( 𝑔𝑥 ) ) ) / ( ( { ⟨ ( Base ‘ ndx ) , 𝑣 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓𝑣 , 𝑔𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓𝑥 ) ( +g ‘ ( 𝑟𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑓𝑣 , 𝑔𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓𝑥 ) ( .r ‘ ( 𝑟𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑠 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑠 ) , 𝑔𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑟𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑓𝑣 , 𝑔𝑣 ↦ ( 𝑠 Σg ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓𝑥 ) ( ·𝑖 ‘ ( 𝑟𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ) ⟩ } ) ∪ ( { ⟨ ( TopSet ‘ ndx ) , ( ∏t ‘ ( TopOpen ∘ 𝑟 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑓 , 𝑔 ⟩ ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ dom 𝑟 ( 𝑓𝑥 ) ( le ‘ ( 𝑟𝑥 ) ) ( 𝑔𝑥 ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑓𝑣 , 𝑔𝑣 ↦ sup ( ( ran ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓𝑥 ) ( dist ‘ ( 𝑟𝑥 ) ) ( 𝑔𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) ⟩ } ∪ { ⟨ ( Hom ‘ ndx ) , ⟩ , ⟨ ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝑣 × 𝑣 ) , 𝑐𝑣 ↦ ( 𝑑 ∈ ( ( 2nd𝑎 ) 𝑐 ) , 𝑒 ∈ ( 𝑎 ) ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑑𝑥 ) ( ⟨ ( ( 1st𝑎 ) ‘ 𝑥 ) , ( ( 2nd𝑎 ) ‘ 𝑥 ) ⟩ ( comp ‘ ( 𝑟𝑥 ) ) ( 𝑐𝑥 ) ) ( 𝑒𝑥 ) ) ) ) ) ⟩ } ) ) )
2 1 reldmmpo Rel dom Xs