Metamath Proof Explorer


Theorem reldmpsr

Description: The multivariate power series constructor is a proper binary operator. (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Assertion reldmpsr Rel dom mPwSer

Proof

Step Hyp Ref Expression
1 df-psr mPwSer = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin } / 𝑑 ( ( Base ‘ 𝑟 ) ↑m 𝑑 ) / 𝑏 ( { ⟨ ( Base ‘ ndx ) , 𝑏 ⟩ , ⟨ ( +g ‘ ndx ) , ( ∘f ( +g𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑓𝑏 , 𝑔𝑏 ↦ ( 𝑘𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦𝑑𝑦r𝑘 } ↦ ( ( 𝑓𝑥 ) ( .r𝑟 ) ( 𝑔 ‘ ( 𝑘f𝑥 ) ) ) ) ) ) ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑟 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r𝑟 ) 𝑓 ) ) ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) ⟩ } ) )
2 1 reldmmpo Rel dom mPwSer