Metamath Proof Explorer


Theorem reldmress

Description: The structure restriction is a proper operator, so it can be used with ovprc1 . (Contributed by Stefan O'Rear, 29-Nov-2014)

Ref Expression
Assertion reldmress Rel dom ↾s

Proof

Step Hyp Ref Expression
1 df-ress s = ( 𝑤 ∈ V , 𝑎 ∈ V ↦ if ( ( Base ‘ 𝑤 ) ⊆ 𝑎 , 𝑤 , ( 𝑤 sSet ⟨ ( Base ‘ ndx ) , ( 𝑎 ∩ ( Base ‘ 𝑤 ) ) ⟩ ) ) )
2 1 reldmmpo Rel dom ↾s