Metamath Proof Explorer


Theorem reldmsets

Description: The structure override operator is a proper operator. (Contributed by Stefan O'Rear, 29-Jan-2015)

Ref Expression
Assertion reldmsets Rel dom sSet

Proof

Step Hyp Ref Expression
1 df-sets sSet = ( 𝑠 ∈ V , 𝑒 ∈ V ↦ ( ( 𝑠 ↾ ( V ∖ dom { 𝑒 } ) ) ∪ { 𝑒 } ) )
2 1 reldmmpo Rel dom sSet