| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 2 | 1 | eldm | ⊢ ( ∅  ∈  dom  𝐹  ↔  ∃ 𝑦 ∅ 𝐹 𝑦 ) | 
						
							| 3 |  | brtpos0 | ⊢ ( 𝑦  ∈  V  →  ( ∅ tpos  𝐹 𝑦  ↔  ∅ 𝐹 𝑦 ) ) | 
						
							| 4 | 3 | elv | ⊢ ( ∅ tpos  𝐹 𝑦  ↔  ∅ 𝐹 𝑦 ) | 
						
							| 5 |  | 0nelrel0 | ⊢ ( Rel  dom  tpos  𝐹  →  ¬  ∅  ∈  dom  tpos  𝐹 ) | 
						
							| 6 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 7 | 1 6 | breldm | ⊢ ( ∅ tpos  𝐹 𝑦  →  ∅  ∈  dom  tpos  𝐹 ) | 
						
							| 8 | 5 7 | nsyl3 | ⊢ ( ∅ tpos  𝐹 𝑦  →  ¬  Rel  dom  tpos  𝐹 ) | 
						
							| 9 | 4 8 | sylbir | ⊢ ( ∅ 𝐹 𝑦  →  ¬  Rel  dom  tpos  𝐹 ) | 
						
							| 10 | 9 | exlimiv | ⊢ ( ∃ 𝑦 ∅ 𝐹 𝑦  →  ¬  Rel  dom  tpos  𝐹 ) | 
						
							| 11 | 2 10 | sylbi | ⊢ ( ∅  ∈  dom  𝐹  →  ¬  Rel  dom  tpos  𝐹 ) | 
						
							| 12 | 11 | con2i | ⊢ ( Rel  dom  tpos  𝐹  →  ¬  ∅  ∈  dom  𝐹 ) | 
						
							| 13 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 14 | 13 | eldm | ⊢ ( 𝑥  ∈  dom  tpos  𝐹  ↔  ∃ 𝑦 𝑥 tpos  𝐹 𝑦 ) | 
						
							| 15 |  | relcnv | ⊢ Rel  ◡ dom  𝐹 | 
						
							| 16 |  | df-rel | ⊢ ( Rel  ◡ dom  𝐹  ↔  ◡ dom  𝐹  ⊆  ( V  ×  V ) ) | 
						
							| 17 | 15 16 | mpbi | ⊢ ◡ dom  𝐹  ⊆  ( V  ×  V ) | 
						
							| 18 | 17 | sseli | ⊢ ( 𝑥  ∈  ◡ dom  𝐹  →  𝑥  ∈  ( V  ×  V ) ) | 
						
							| 19 | 18 | a1i | ⊢ ( ( ¬  ∅  ∈  dom  𝐹  ∧  𝑥 tpos  𝐹 𝑦 )  →  ( 𝑥  ∈  ◡ dom  𝐹  →  𝑥  ∈  ( V  ×  V ) ) ) | 
						
							| 20 |  | elsni | ⊢ ( 𝑥  ∈  { ∅ }  →  𝑥  =  ∅ ) | 
						
							| 21 | 20 | breq1d | ⊢ ( 𝑥  ∈  { ∅ }  →  ( 𝑥 tpos  𝐹 𝑦  ↔  ∅ tpos  𝐹 𝑦 ) ) | 
						
							| 22 | 1 6 | breldm | ⊢ ( ∅ 𝐹 𝑦  →  ∅  ∈  dom  𝐹 ) | 
						
							| 23 | 22 | pm2.24d | ⊢ ( ∅ 𝐹 𝑦  →  ( ¬  ∅  ∈  dom  𝐹  →  𝑥  ∈  ( V  ×  V ) ) ) | 
						
							| 24 | 4 23 | sylbi | ⊢ ( ∅ tpos  𝐹 𝑦  →  ( ¬  ∅  ∈  dom  𝐹  →  𝑥  ∈  ( V  ×  V ) ) ) | 
						
							| 25 | 21 24 | biimtrdi | ⊢ ( 𝑥  ∈  { ∅ }  →  ( 𝑥 tpos  𝐹 𝑦  →  ( ¬  ∅  ∈  dom  𝐹  →  𝑥  ∈  ( V  ×  V ) ) ) ) | 
						
							| 26 | 25 | com3l | ⊢ ( 𝑥 tpos  𝐹 𝑦  →  ( ¬  ∅  ∈  dom  𝐹  →  ( 𝑥  ∈  { ∅ }  →  𝑥  ∈  ( V  ×  V ) ) ) ) | 
						
							| 27 | 26 | impcom | ⊢ ( ( ¬  ∅  ∈  dom  𝐹  ∧  𝑥 tpos  𝐹 𝑦 )  →  ( 𝑥  ∈  { ∅ }  →  𝑥  ∈  ( V  ×  V ) ) ) | 
						
							| 28 |  | brtpos2 | ⊢ ( 𝑦  ∈  V  →  ( 𝑥 tpos  𝐹 𝑦  ↔  ( 𝑥  ∈  ( ◡ dom  𝐹  ∪  { ∅ } )  ∧  ∪  ◡ { 𝑥 } 𝐹 𝑦 ) ) ) | 
						
							| 29 | 6 28 | ax-mp | ⊢ ( 𝑥 tpos  𝐹 𝑦  ↔  ( 𝑥  ∈  ( ◡ dom  𝐹  ∪  { ∅ } )  ∧  ∪  ◡ { 𝑥 } 𝐹 𝑦 ) ) | 
						
							| 30 | 29 | simplbi | ⊢ ( 𝑥 tpos  𝐹 𝑦  →  𝑥  ∈  ( ◡ dom  𝐹  ∪  { ∅ } ) ) | 
						
							| 31 |  | elun | ⊢ ( 𝑥  ∈  ( ◡ dom  𝐹  ∪  { ∅ } )  ↔  ( 𝑥  ∈  ◡ dom  𝐹  ∨  𝑥  ∈  { ∅ } ) ) | 
						
							| 32 | 30 31 | sylib | ⊢ ( 𝑥 tpos  𝐹 𝑦  →  ( 𝑥  ∈  ◡ dom  𝐹  ∨  𝑥  ∈  { ∅ } ) ) | 
						
							| 33 | 32 | adantl | ⊢ ( ( ¬  ∅  ∈  dom  𝐹  ∧  𝑥 tpos  𝐹 𝑦 )  →  ( 𝑥  ∈  ◡ dom  𝐹  ∨  𝑥  ∈  { ∅ } ) ) | 
						
							| 34 | 19 27 33 | mpjaod | ⊢ ( ( ¬  ∅  ∈  dom  𝐹  ∧  𝑥 tpos  𝐹 𝑦 )  →  𝑥  ∈  ( V  ×  V ) ) | 
						
							| 35 | 34 | ex | ⊢ ( ¬  ∅  ∈  dom  𝐹  →  ( 𝑥 tpos  𝐹 𝑦  →  𝑥  ∈  ( V  ×  V ) ) ) | 
						
							| 36 | 35 | exlimdv | ⊢ ( ¬  ∅  ∈  dom  𝐹  →  ( ∃ 𝑦 𝑥 tpos  𝐹 𝑦  →  𝑥  ∈  ( V  ×  V ) ) ) | 
						
							| 37 | 14 36 | biimtrid | ⊢ ( ¬  ∅  ∈  dom  𝐹  →  ( 𝑥  ∈  dom  tpos  𝐹  →  𝑥  ∈  ( V  ×  V ) ) ) | 
						
							| 38 | 37 | ssrdv | ⊢ ( ¬  ∅  ∈  dom  𝐹  →  dom  tpos  𝐹  ⊆  ( V  ×  V ) ) | 
						
							| 39 |  | df-rel | ⊢ ( Rel  dom  tpos  𝐹  ↔  dom  tpos  𝐹  ⊆  ( V  ×  V ) ) | 
						
							| 40 | 38 39 | sylibr | ⊢ ( ¬  ∅  ∈  dom  𝐹  →  Rel  dom  tpos  𝐹 ) | 
						
							| 41 | 12 40 | impbii | ⊢ ( Rel  dom  tpos  𝐹  ↔  ¬  ∅  ∈  dom  𝐹 ) |