Description: The divides relation is a relation. (Contributed by Mario Carneiro, 1-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | reldvdsr.1 | ⊢ ∥ = ( ∥r ‘ 𝑅 ) | |
Assertion | reldvdsr | ⊢ Rel ∥ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldvdsr.1 | ⊢ ∥ = ( ∥r ‘ 𝑅 ) | |
2 | df-dvdsr | ⊢ ∥r = ( 𝑤 ∈ V ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( Base ‘ 𝑤 ) ∧ ∃ 𝑧 ∈ ( Base ‘ 𝑤 ) ( 𝑧 ( .r ‘ 𝑤 ) 𝑥 ) = 𝑦 ) } ) | |
3 | 2 | relmptopab | ⊢ Rel ( ∥r ‘ 𝑅 ) |
4 | 1 | releqi | ⊢ ( Rel ∥ ↔ Rel ( ∥r ‘ 𝑅 ) ) |
5 | 3 4 | mpbir | ⊢ Rel ∥ |