Description: The real part of a number is less than or equal to its absolute value. Proposition 10-3.7(d) of Gleason p. 133. (Contributed by NM, 1-Apr-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | releabs | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ≤ ( abs ‘ 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recl | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ ) | |
2 | 1 | recnd | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℂ ) |
3 | abscl | ⊢ ( ( ℜ ‘ 𝐴 ) ∈ ℂ → ( abs ‘ ( ℜ ‘ 𝐴 ) ) ∈ ℝ ) | |
4 | 2 3 | syl | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( ℜ ‘ 𝐴 ) ) ∈ ℝ ) |
5 | abscl | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) | |
6 | leabs | ⊢ ( ( ℜ ‘ 𝐴 ) ∈ ℝ → ( ℜ ‘ 𝐴 ) ≤ ( abs ‘ ( ℜ ‘ 𝐴 ) ) ) | |
7 | 1 6 | syl | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ≤ ( abs ‘ ( ℜ ‘ 𝐴 ) ) ) |
8 | absrele | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( ℜ ‘ 𝐴 ) ) ≤ ( abs ‘ 𝐴 ) ) | |
9 | 1 4 5 7 8 | letrd | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ≤ ( abs ‘ 𝐴 ) ) |