Description: The first argument of a binary relation belongs to its domain. Note that A R B does not imply Rel R : see for example nrelv and brv . (Contributed by NM, 2-Jul-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | releldm | ⊢ ( ( Rel 𝑅 ∧ 𝐴 𝑅 𝐵 ) → 𝐴 ∈ dom 𝑅 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brrelex1 | ⊢ ( ( Rel 𝑅 ∧ 𝐴 𝑅 𝐵 ) → 𝐴 ∈ V ) | |
| 2 | brrelex2 | ⊢ ( ( Rel 𝑅 ∧ 𝐴 𝑅 𝐵 ) → 𝐵 ∈ V ) | |
| 3 | simpr | ⊢ ( ( Rel 𝑅 ∧ 𝐴 𝑅 𝐵 ) → 𝐴 𝑅 𝐵 ) | |
| 4 | breldmg | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 𝑅 𝐵 ) → 𝐴 ∈ dom 𝑅 ) | |
| 5 | 1 2 3 4 | syl3anc | ⊢ ( ( Rel 𝑅 ∧ 𝐴 𝑅 𝐵 ) → 𝐴 ∈ dom 𝑅 ) |