| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elex | ⊢ ( 𝐵  ∈  dom  𝐴  →  𝐵  ∈  V ) | 
						
							| 2 | 1 | anim2i | ⊢ ( ( Rel  𝐴  ∧  𝐵  ∈  dom  𝐴 )  →  ( Rel  𝐴  ∧  𝐵  ∈  V ) ) | 
						
							| 3 |  | id | ⊢ ( ( 1st  ‘ 𝑥 )  =  𝐵  →  ( 1st  ‘ 𝑥 )  =  𝐵 ) | 
						
							| 4 |  | fvex | ⊢ ( 1st  ‘ 𝑥 )  ∈  V | 
						
							| 5 | 3 4 | eqeltrrdi | ⊢ ( ( 1st  ‘ 𝑥 )  =  𝐵  →  𝐵  ∈  V ) | 
						
							| 6 | 5 | rexlimivw | ⊢ ( ∃ 𝑥  ∈  𝐴 ( 1st  ‘ 𝑥 )  =  𝐵  →  𝐵  ∈  V ) | 
						
							| 7 | 6 | anim2i | ⊢ ( ( Rel  𝐴  ∧  ∃ 𝑥  ∈  𝐴 ( 1st  ‘ 𝑥 )  =  𝐵 )  →  ( Rel  𝐴  ∧  𝐵  ∈  V ) ) | 
						
							| 8 |  | eldm2g | ⊢ ( 𝐵  ∈  V  →  ( 𝐵  ∈  dom  𝐴  ↔  ∃ 𝑦 〈 𝐵 ,  𝑦 〉  ∈  𝐴 ) ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( Rel  𝐴  ∧  𝐵  ∈  V )  →  ( 𝐵  ∈  dom  𝐴  ↔  ∃ 𝑦 〈 𝐵 ,  𝑦 〉  ∈  𝐴 ) ) | 
						
							| 10 |  | df-rel | ⊢ ( Rel  𝐴  ↔  𝐴  ⊆  ( V  ×  V ) ) | 
						
							| 11 |  | ssel | ⊢ ( 𝐴  ⊆  ( V  ×  V )  →  ( 𝑥  ∈  𝐴  →  𝑥  ∈  ( V  ×  V ) ) ) | 
						
							| 12 | 10 11 | sylbi | ⊢ ( Rel  𝐴  →  ( 𝑥  ∈  𝐴  →  𝑥  ∈  ( V  ×  V ) ) ) | 
						
							| 13 | 12 | imp | ⊢ ( ( Rel  𝐴  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  ( V  ×  V ) ) | 
						
							| 14 |  | op1steq | ⊢ ( 𝑥  ∈  ( V  ×  V )  →  ( ( 1st  ‘ 𝑥 )  =  𝐵  ↔  ∃ 𝑦 𝑥  =  〈 𝐵 ,  𝑦 〉 ) ) | 
						
							| 15 | 13 14 | syl | ⊢ ( ( Rel  𝐴  ∧  𝑥  ∈  𝐴 )  →  ( ( 1st  ‘ 𝑥 )  =  𝐵  ↔  ∃ 𝑦 𝑥  =  〈 𝐵 ,  𝑦 〉 ) ) | 
						
							| 16 | 15 | rexbidva | ⊢ ( Rel  𝐴  →  ( ∃ 𝑥  ∈  𝐴 ( 1st  ‘ 𝑥 )  =  𝐵  ↔  ∃ 𝑥  ∈  𝐴 ∃ 𝑦 𝑥  =  〈 𝐵 ,  𝑦 〉 ) ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( Rel  𝐴  ∧  𝐵  ∈  V )  →  ( ∃ 𝑥  ∈  𝐴 ( 1st  ‘ 𝑥 )  =  𝐵  ↔  ∃ 𝑥  ∈  𝐴 ∃ 𝑦 𝑥  =  〈 𝐵 ,  𝑦 〉 ) ) | 
						
							| 18 |  | rexcom4 | ⊢ ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦 𝑥  =  〈 𝐵 ,  𝑦 〉  ↔  ∃ 𝑦 ∃ 𝑥  ∈  𝐴 𝑥  =  〈 𝐵 ,  𝑦 〉 ) | 
						
							| 19 |  | risset | ⊢ ( 〈 𝐵 ,  𝑦 〉  ∈  𝐴  ↔  ∃ 𝑥  ∈  𝐴 𝑥  =  〈 𝐵 ,  𝑦 〉 ) | 
						
							| 20 | 19 | exbii | ⊢ ( ∃ 𝑦 〈 𝐵 ,  𝑦 〉  ∈  𝐴  ↔  ∃ 𝑦 ∃ 𝑥  ∈  𝐴 𝑥  =  〈 𝐵 ,  𝑦 〉 ) | 
						
							| 21 | 18 20 | bitr4i | ⊢ ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦 𝑥  =  〈 𝐵 ,  𝑦 〉  ↔  ∃ 𝑦 〈 𝐵 ,  𝑦 〉  ∈  𝐴 ) | 
						
							| 22 | 17 21 | bitrdi | ⊢ ( ( Rel  𝐴  ∧  𝐵  ∈  V )  →  ( ∃ 𝑥  ∈  𝐴 ( 1st  ‘ 𝑥 )  =  𝐵  ↔  ∃ 𝑦 〈 𝐵 ,  𝑦 〉  ∈  𝐴 ) ) | 
						
							| 23 | 9 22 | bitr4d | ⊢ ( ( Rel  𝐴  ∧  𝐵  ∈  V )  →  ( 𝐵  ∈  dom  𝐴  ↔  ∃ 𝑥  ∈  𝐴 ( 1st  ‘ 𝑥 )  =  𝐵 ) ) | 
						
							| 24 | 2 7 23 | pm5.21nd | ⊢ ( Rel  𝐴  →  ( 𝐵  ∈  dom  𝐴  ↔  ∃ 𝑥  ∈  𝐴 ( 1st  ‘ 𝑥 )  =  𝐵 ) ) |