Description: Membership in a domain. (Contributed by Mario Carneiro, 5-Nov-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | releldmb | ⊢ ( Rel 𝑅 → ( 𝐴 ∈ dom 𝑅 ↔ ∃ 𝑥 𝐴 𝑅 𝑥 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eldmg | ⊢ ( 𝐴 ∈ dom 𝑅 → ( 𝐴 ∈ dom 𝑅 ↔ ∃ 𝑥 𝐴 𝑅 𝑥 ) ) | |
| 2 | 1 | ibi | ⊢ ( 𝐴 ∈ dom 𝑅 → ∃ 𝑥 𝐴 𝑅 𝑥 ) | 
| 3 | releldm | ⊢ ( ( Rel 𝑅 ∧ 𝐴 𝑅 𝑥 ) → 𝐴 ∈ dom 𝑅 ) | |
| 4 | 3 | ex | ⊢ ( Rel 𝑅 → ( 𝐴 𝑅 𝑥 → 𝐴 ∈ dom 𝑅 ) ) | 
| 5 | 4 | exlimdv | ⊢ ( Rel 𝑅 → ( ∃ 𝑥 𝐴 𝑅 𝑥 → 𝐴 ∈ dom 𝑅 ) ) | 
| 6 | 2 5 | impbid2 | ⊢ ( Rel 𝑅 → ( 𝐴 ∈ dom 𝑅 ↔ ∃ 𝑥 𝐴 𝑅 𝑥 ) ) |