| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eldif | ⊢ ( 𝐶  ∈  ( dom  𝐴  ∖  dom  𝐵 )  ↔  ( 𝐶  ∈  dom  𝐴  ∧  ¬  𝐶  ∈  dom  𝐵 ) ) | 
						
							| 2 |  | releldm2 | ⊢ ( Rel  𝐴  →  ( 𝐶  ∈  dom  𝐴  ↔  ∃ 𝑥  ∈  𝐴 ( 1st  ‘ 𝑥 )  =  𝐶 ) ) | 
						
							| 3 | 2 | adantr | ⊢ ( ( Rel  𝐴  ∧  𝐵  ⊆  𝐴 )  →  ( 𝐶  ∈  dom  𝐴  ↔  ∃ 𝑥  ∈  𝐴 ( 1st  ‘ 𝑥 )  =  𝐶 ) ) | 
						
							| 4 | 3 | anbi1d | ⊢ ( ( Rel  𝐴  ∧  𝐵  ⊆  𝐴 )  →  ( ( 𝐶  ∈  dom  𝐴  ∧  ¬  𝐶  ∈  dom  𝐵 )  ↔  ( ∃ 𝑥  ∈  𝐴 ( 1st  ‘ 𝑥 )  =  𝐶  ∧  ¬  𝐶  ∈  dom  𝐵 ) ) ) | 
						
							| 5 | 1 4 | bitrid | ⊢ ( ( Rel  𝐴  ∧  𝐵  ⊆  𝐴 )  →  ( 𝐶  ∈  ( dom  𝐴  ∖  dom  𝐵 )  ↔  ( ∃ 𝑥  ∈  𝐴 ( 1st  ‘ 𝑥 )  =  𝐶  ∧  ¬  𝐶  ∈  dom  𝐵 ) ) ) | 
						
							| 6 |  | simprl | ⊢ ( ( ( Rel  𝐴  ∧  𝐵  ⊆  𝐴 )  ∧  ( ∃ 𝑥  ∈  𝐴 ( 1st  ‘ 𝑥 )  =  𝐶  ∧  ¬  𝐶  ∈  dom  𝐵 ) )  →  ∃ 𝑥  ∈  𝐴 ( 1st  ‘ 𝑥 )  =  𝐶 ) | 
						
							| 7 |  | relss | ⊢ ( 𝐵  ⊆  𝐴  →  ( Rel  𝐴  →  Rel  𝐵 ) ) | 
						
							| 8 | 7 | impcom | ⊢ ( ( Rel  𝐴  ∧  𝐵  ⊆  𝐴 )  →  Rel  𝐵 ) | 
						
							| 9 |  | 1stdm | ⊢ ( ( Rel  𝐵  ∧  𝑥  ∈  𝐵 )  →  ( 1st  ‘ 𝑥 )  ∈  dom  𝐵 ) | 
						
							| 10 | 8 9 | sylan | ⊢ ( ( ( Rel  𝐴  ∧  𝐵  ⊆  𝐴 )  ∧  𝑥  ∈  𝐵 )  →  ( 1st  ‘ 𝑥 )  ∈  dom  𝐵 ) | 
						
							| 11 |  | eleq1 | ⊢ ( ( 1st  ‘ 𝑥 )  =  𝐶  →  ( ( 1st  ‘ 𝑥 )  ∈  dom  𝐵  ↔  𝐶  ∈  dom  𝐵 ) ) | 
						
							| 12 | 10 11 | syl5ibcom | ⊢ ( ( ( Rel  𝐴  ∧  𝐵  ⊆  𝐴 )  ∧  𝑥  ∈  𝐵 )  →  ( ( 1st  ‘ 𝑥 )  =  𝐶  →  𝐶  ∈  dom  𝐵 ) ) | 
						
							| 13 | 12 | rexlimdva | ⊢ ( ( Rel  𝐴  ∧  𝐵  ⊆  𝐴 )  →  ( ∃ 𝑥  ∈  𝐵 ( 1st  ‘ 𝑥 )  =  𝐶  →  𝐶  ∈  dom  𝐵 ) ) | 
						
							| 14 | 13 | con3d | ⊢ ( ( Rel  𝐴  ∧  𝐵  ⊆  𝐴 )  →  ( ¬  𝐶  ∈  dom  𝐵  →  ¬  ∃ 𝑥  ∈  𝐵 ( 1st  ‘ 𝑥 )  =  𝐶 ) ) | 
						
							| 15 |  | ralnex | ⊢ ( ∀ 𝑥  ∈  𝐵 ¬  ( 1st  ‘ 𝑥 )  =  𝐶  ↔  ¬  ∃ 𝑥  ∈  𝐵 ( 1st  ‘ 𝑥 )  =  𝐶 ) | 
						
							| 16 | 14 15 | imbitrrdi | ⊢ ( ( Rel  𝐴  ∧  𝐵  ⊆  𝐴 )  →  ( ¬  𝐶  ∈  dom  𝐵  →  ∀ 𝑥  ∈  𝐵 ¬  ( 1st  ‘ 𝑥 )  =  𝐶 ) ) | 
						
							| 17 | 16 | adantld | ⊢ ( ( Rel  𝐴  ∧  𝐵  ⊆  𝐴 )  →  ( ( ∃ 𝑥  ∈  𝐴 ( 1st  ‘ 𝑥 )  =  𝐶  ∧  ¬  𝐶  ∈  dom  𝐵 )  →  ∀ 𝑥  ∈  𝐵 ¬  ( 1st  ‘ 𝑥 )  =  𝐶 ) ) | 
						
							| 18 | 17 | imp | ⊢ ( ( ( Rel  𝐴  ∧  𝐵  ⊆  𝐴 )  ∧  ( ∃ 𝑥  ∈  𝐴 ( 1st  ‘ 𝑥 )  =  𝐶  ∧  ¬  𝐶  ∈  dom  𝐵 ) )  →  ∀ 𝑥  ∈  𝐵 ¬  ( 1st  ‘ 𝑥 )  =  𝐶 ) | 
						
							| 19 |  | rexdifi | ⊢ ( ( ∃ 𝑥  ∈  𝐴 ( 1st  ‘ 𝑥 )  =  𝐶  ∧  ∀ 𝑥  ∈  𝐵 ¬  ( 1st  ‘ 𝑥 )  =  𝐶 )  →  ∃ 𝑥  ∈  ( 𝐴  ∖  𝐵 ) ( 1st  ‘ 𝑥 )  =  𝐶 ) | 
						
							| 20 | 6 18 19 | syl2anc | ⊢ ( ( ( Rel  𝐴  ∧  𝐵  ⊆  𝐴 )  ∧  ( ∃ 𝑥  ∈  𝐴 ( 1st  ‘ 𝑥 )  =  𝐶  ∧  ¬  𝐶  ∈  dom  𝐵 ) )  →  ∃ 𝑥  ∈  ( 𝐴  ∖  𝐵 ) ( 1st  ‘ 𝑥 )  =  𝐶 ) | 
						
							| 21 | 20 | ex | ⊢ ( ( Rel  𝐴  ∧  𝐵  ⊆  𝐴 )  →  ( ( ∃ 𝑥  ∈  𝐴 ( 1st  ‘ 𝑥 )  =  𝐶  ∧  ¬  𝐶  ∈  dom  𝐵 )  →  ∃ 𝑥  ∈  ( 𝐴  ∖  𝐵 ) ( 1st  ‘ 𝑥 )  =  𝐶 ) ) | 
						
							| 22 | 5 21 | sylbid | ⊢ ( ( Rel  𝐴  ∧  𝐵  ⊆  𝐴 )  →  ( 𝐶  ∈  ( dom  𝐴  ∖  dom  𝐵 )  →  ∃ 𝑥  ∈  ( 𝐴  ∖  𝐵 ) ( 1st  ‘ 𝑥 )  =  𝐶 ) ) |