Metamath Proof Explorer


Theorem releldmi

Description: The first argument of a binary relation belongs to its domain. (Contributed by NM, 28-Apr-2015)

Ref Expression
Hypothesis releldm.1 Rel 𝑅
Assertion releldmi ( 𝐴 𝑅 𝐵𝐴 ∈ dom 𝑅 )

Proof

Step Hyp Ref Expression
1 releldm.1 Rel 𝑅
2 releldm ( ( Rel 𝑅𝐴 𝑅 𝐵 ) → 𝐴 ∈ dom 𝑅 )
3 1 2 mpan ( 𝐴 𝑅 𝐵𝐴 ∈ dom 𝑅 )