Description: Membership in an equivalence class when R is a relation. (Contributed by Mario Carneiro, 11-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | relelec | ⊢ ( Rel 𝑅 → ( 𝐴 ∈ [ 𝐵 ] 𝑅 ↔ 𝐵 𝑅 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex | ⊢ ( 𝐴 ∈ [ 𝐵 ] 𝑅 → 𝐴 ∈ V ) | |
2 | ecexr | ⊢ ( 𝐴 ∈ [ 𝐵 ] 𝑅 → 𝐵 ∈ V ) | |
3 | 1 2 | jca | ⊢ ( 𝐴 ∈ [ 𝐵 ] 𝑅 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
4 | 3 | adantl | ⊢ ( ( Rel 𝑅 ∧ 𝐴 ∈ [ 𝐵 ] 𝑅 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
5 | brrelex12 | ⊢ ( ( Rel 𝑅 ∧ 𝐵 𝑅 𝐴 ) → ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) | |
6 | 5 | ancomd | ⊢ ( ( Rel 𝑅 ∧ 𝐵 𝑅 𝐴 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
7 | elecg | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 ∈ [ 𝐵 ] 𝑅 ↔ 𝐵 𝑅 𝐴 ) ) | |
8 | 4 6 7 | pm5.21nd | ⊢ ( Rel 𝑅 → ( 𝐴 ∈ [ 𝐵 ] 𝑅 ↔ 𝐵 𝑅 𝐴 ) ) |