Metamath Proof Explorer


Theorem relelec

Description: Membership in an equivalence class when R is a relation. (Contributed by Mario Carneiro, 11-Sep-2015)

Ref Expression
Assertion relelec ( Rel 𝑅 → ( 𝐴 ∈ [ 𝐵 ] 𝑅𝐵 𝑅 𝐴 ) )

Proof

Step Hyp Ref Expression
1 elex ( 𝐴 ∈ [ 𝐵 ] 𝑅𝐴 ∈ V )
2 ecexr ( 𝐴 ∈ [ 𝐵 ] 𝑅𝐵 ∈ V )
3 1 2 jca ( 𝐴 ∈ [ 𝐵 ] 𝑅 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )
4 3 adantl ( ( Rel 𝑅𝐴 ∈ [ 𝐵 ] 𝑅 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )
5 brrelex12 ( ( Rel 𝑅𝐵 𝑅 𝐴 ) → ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) )
6 5 ancomd ( ( Rel 𝑅𝐵 𝑅 𝐴 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )
7 elecg ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 ∈ [ 𝐵 ] 𝑅𝐵 𝑅 𝐴 ) )
8 4 6 7 pm5.21nd ( Rel 𝑅 → ( 𝐴 ∈ [ 𝐵 ] 𝑅𝐵 𝑅 𝐴 ) )