Description: The second argument of a binary relation belongs to its range. (Contributed by NM, 2-Jul-2008)
Ref | Expression | ||
---|---|---|---|
Assertion | relelrn | ⊢ ( ( Rel 𝑅 ∧ 𝐴 𝑅 𝐵 ) → 𝐵 ∈ ran 𝑅 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brrelex1 | ⊢ ( ( Rel 𝑅 ∧ 𝐴 𝑅 𝐵 ) → 𝐴 ∈ V ) | |
2 | brrelex2 | ⊢ ( ( Rel 𝑅 ∧ 𝐴 𝑅 𝐵 ) → 𝐵 ∈ V ) | |
3 | simpr | ⊢ ( ( Rel 𝑅 ∧ 𝐴 𝑅 𝐵 ) → 𝐴 𝑅 𝐵 ) | |
4 | brelrng | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 𝑅 𝐵 ) → 𝐵 ∈ ran 𝑅 ) | |
5 | 1 2 3 4 | syl3anc | ⊢ ( ( Rel 𝑅 ∧ 𝐴 𝑅 𝐵 ) → 𝐵 ∈ ran 𝑅 ) |