Metamath Proof Explorer


Theorem relelrnb

Description: Membership in a range. (Contributed by Mario Carneiro, 5-Nov-2015)

Ref Expression
Assertion relelrnb ( Rel 𝑅 → ( 𝐴 ∈ ran 𝑅 ↔ ∃ 𝑥 𝑥 𝑅 𝐴 ) )

Proof

Step Hyp Ref Expression
1 elrng ( 𝐴 ∈ ran 𝑅 → ( 𝐴 ∈ ran 𝑅 ↔ ∃ 𝑥 𝑥 𝑅 𝐴 ) )
2 1 ibi ( 𝐴 ∈ ran 𝑅 → ∃ 𝑥 𝑥 𝑅 𝐴 )
3 relelrn ( ( Rel 𝑅𝑥 𝑅 𝐴 ) → 𝐴 ∈ ran 𝑅 )
4 3 ex ( Rel 𝑅 → ( 𝑥 𝑅 𝐴𝐴 ∈ ran 𝑅 ) )
5 4 exlimdv ( Rel 𝑅 → ( ∃ 𝑥 𝑥 𝑅 𝐴𝐴 ∈ ran 𝑅 ) )
6 2 5 impbid2 ( Rel 𝑅 → ( 𝐴 ∈ ran 𝑅 ↔ ∃ 𝑥 𝑥 𝑅 𝐴 ) )