Description: Equality theorem for the relation predicate. (Contributed by NM, 1-Aug-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | releq | ⊢ ( 𝐴 = 𝐵 → ( Rel 𝐴 ↔ Rel 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ⊆ ( V × V ) ↔ 𝐵 ⊆ ( V × V ) ) ) | |
2 | df-rel | ⊢ ( Rel 𝐴 ↔ 𝐴 ⊆ ( V × V ) ) | |
3 | df-rel | ⊢ ( Rel 𝐵 ↔ 𝐵 ⊆ ( V × V ) ) | |
4 | 1 2 3 | 3bitr4g | ⊢ ( 𝐴 = 𝐵 → ( Rel 𝐴 ↔ Rel 𝐵 ) ) |