Description: Equality deduction for the relation predicate. (Contributed by NM, 8-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | releqd.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| Assertion | releqd | ⊢ ( 𝜑 → ( Rel 𝐴 ↔ Rel 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | releqd.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| 2 | releq | ⊢ ( 𝐴 = 𝐵 → ( Rel 𝐴 ↔ Rel 𝐵 ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝜑 → ( Rel 𝐴 ↔ Rel 𝐵 ) ) |