Metamath Proof Explorer


Theorem releqg

Description: The left coset equivalence relation is a relation. (Contributed by Mario Carneiro, 14-Jun-2015)

Ref Expression
Hypothesis releqg.r 𝑅 = ( 𝐺 ~QG 𝑆 )
Assertion releqg Rel 𝑅

Proof

Step Hyp Ref Expression
1 releqg.r 𝑅 = ( 𝐺 ~QG 𝑆 )
2 df-eqg ~QG = ( 𝑔 ∈ V , 𝑠 ∈ V ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑔 ) ∧ ( ( ( invg𝑔 ) ‘ 𝑥 ) ( +g𝑔 ) 𝑦 ) ∈ 𝑠 ) } )
3 2 relmpoopab Rel ( 𝐺 ~QG 𝑆 )
4 1 releqi ( Rel 𝑅 ↔ Rel ( 𝐺 ~QG 𝑆 ) )
5 3 4 mpbir Rel 𝑅