Description: The left coset equivalence relation is a relation. (Contributed by Mario Carneiro, 14-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | releqg.r | ⊢ 𝑅 = ( 𝐺 ~QG 𝑆 ) | |
| Assertion | releqg | ⊢ Rel 𝑅 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | releqg.r | ⊢ 𝑅 = ( 𝐺 ~QG 𝑆 ) | |
| 2 | df-eqg | ⊢ ~QG = ( 𝑔 ∈ V , 𝑠 ∈ V ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑔 ) ∧ ( ( ( invg ‘ 𝑔 ) ‘ 𝑥 ) ( +g ‘ 𝑔 ) 𝑦 ) ∈ 𝑠 ) } ) | |
| 3 | 2 | relmpoopab | ⊢ Rel ( 𝐺 ~QG 𝑆 ) |
| 4 | 1 | releqi | ⊢ ( Rel 𝑅 ↔ Rel ( 𝐺 ~QG 𝑆 ) ) |
| 5 | 3 4 | mpbir | ⊢ Rel 𝑅 |