Step |
Hyp |
Ref |
Expression |
1 |
|
snprc |
⊢ ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ ) |
2 |
|
imaeq2 |
⊢ ( { 𝐴 } = ∅ → ( 𝑅 “ { 𝐴 } ) = ( 𝑅 “ ∅ ) ) |
3 |
1 2
|
sylbi |
⊢ ( ¬ 𝐴 ∈ V → ( 𝑅 “ { 𝐴 } ) = ( 𝑅 “ ∅ ) ) |
4 |
|
ima0 |
⊢ ( 𝑅 “ ∅ ) = ∅ |
5 |
3 4
|
eqtrdi |
⊢ ( ¬ 𝐴 ∈ V → ( 𝑅 “ { 𝐴 } ) = ∅ ) |
6 |
5
|
adantl |
⊢ ( ( Rel 𝑅 ∧ ¬ 𝐴 ∈ V ) → ( 𝑅 “ { 𝐴 } ) = ∅ ) |
7 |
|
brrelex1 |
⊢ ( ( Rel 𝑅 ∧ 𝐴 𝑅 𝑦 ) → 𝐴 ∈ V ) |
8 |
7
|
stoic1a |
⊢ ( ( Rel 𝑅 ∧ ¬ 𝐴 ∈ V ) → ¬ 𝐴 𝑅 𝑦 ) |
9 |
8
|
nexdv |
⊢ ( ( Rel 𝑅 ∧ ¬ 𝐴 ∈ V ) → ¬ ∃ 𝑦 𝐴 𝑅 𝑦 ) |
10 |
|
abn0 |
⊢ ( { 𝑦 ∣ 𝐴 𝑅 𝑦 } ≠ ∅ ↔ ∃ 𝑦 𝐴 𝑅 𝑦 ) |
11 |
10
|
necon1bbii |
⊢ ( ¬ ∃ 𝑦 𝐴 𝑅 𝑦 ↔ { 𝑦 ∣ 𝐴 𝑅 𝑦 } = ∅ ) |
12 |
9 11
|
sylib |
⊢ ( ( Rel 𝑅 ∧ ¬ 𝐴 ∈ V ) → { 𝑦 ∣ 𝐴 𝑅 𝑦 } = ∅ ) |
13 |
6 12
|
eqtr4d |
⊢ ( ( Rel 𝑅 ∧ ¬ 𝐴 ∈ V ) → ( 𝑅 “ { 𝐴 } ) = { 𝑦 ∣ 𝐴 𝑅 𝑦 } ) |
14 |
13
|
ex |
⊢ ( Rel 𝑅 → ( ¬ 𝐴 ∈ V → ( 𝑅 “ { 𝐴 } ) = { 𝑦 ∣ 𝐴 𝑅 𝑦 } ) ) |
15 |
|
imasng |
⊢ ( 𝐴 ∈ V → ( 𝑅 “ { 𝐴 } ) = { 𝑦 ∣ 𝐴 𝑅 𝑦 } ) |
16 |
14 15
|
pm2.61d2 |
⊢ ( Rel 𝑅 → ( 𝑅 “ { 𝐴 } ) = { 𝑦 ∣ 𝐴 𝑅 𝑦 } ) |