| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1re |
⊢ 1 ∈ ℝ |
| 2 |
|
letric |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 𝐴 ≤ 1 ∨ 1 ≤ 𝐴 ) ) |
| 3 |
1 2
|
mpan2 |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ≤ 1 ∨ 1 ≤ 𝐴 ) ) |
| 4 |
|
0re |
⊢ 0 ∈ ℝ |
| 5 |
|
letric |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝐴 ≤ 0 ∨ 0 ≤ 𝐴 ) ) |
| 6 |
4 5
|
mpan2 |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ≤ 0 ∨ 0 ≤ 𝐴 ) ) |
| 7 |
|
pm3.21 |
⊢ ( 𝐴 ≤ 1 → ( 0 ≤ 𝐴 → ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ) ) |
| 8 |
7
|
orim2d |
⊢ ( 𝐴 ≤ 1 → ( ( 𝐴 ≤ 0 ∨ 0 ≤ 𝐴 ) → ( 𝐴 ≤ 0 ∨ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ) ) ) |
| 9 |
6 8
|
syl5com |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ≤ 1 → ( 𝐴 ≤ 0 ∨ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ) ) ) |
| 10 |
9
|
orim1d |
⊢ ( 𝐴 ∈ ℝ → ( ( 𝐴 ≤ 1 ∨ 1 ≤ 𝐴 ) → ( ( 𝐴 ≤ 0 ∨ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ) ∨ 1 ≤ 𝐴 ) ) ) |
| 11 |
3 10
|
mpd |
⊢ ( 𝐴 ∈ ℝ → ( ( 𝐴 ≤ 0 ∨ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ) ∨ 1 ≤ 𝐴 ) ) |
| 12 |
|
df-3or |
⊢ ( ( 𝐴 ≤ 0 ∨ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ∨ 1 ≤ 𝐴 ) ↔ ( ( 𝐴 ≤ 0 ∨ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ) ∨ 1 ≤ 𝐴 ) ) |
| 13 |
11 12
|
sylibr |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ≤ 0 ∨ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 1 ) ∨ 1 ≤ 𝐴 ) ) |