Description: The intersection with a relation is a relation. (Contributed by NM, 16-Aug-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | relin1 | ⊢ ( Rel 𝐴 → Rel ( 𝐴 ∩ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 | ⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 | |
| 2 | relss | ⊢ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 → ( Rel 𝐴 → Rel ( 𝐴 ∩ 𝐵 ) ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( Rel 𝐴 → Rel ( 𝐴 ∩ 𝐵 ) ) |