Metamath Proof Explorer


Theorem reliun

Description: An indexed union is a relation iff each member of its indexed family is a relation. (Contributed by NM, 19-Dec-2008)

Ref Expression
Assertion reliun ( Rel 𝑥𝐴 𝐵 ↔ ∀ 𝑥𝐴 Rel 𝐵 )

Proof

Step Hyp Ref Expression
1 df-iun 𝑥𝐴 𝐵 = { 𝑦 ∣ ∃ 𝑥𝐴 𝑦𝐵 }
2 1 releqi ( Rel 𝑥𝐴 𝐵 ↔ Rel { 𝑦 ∣ ∃ 𝑥𝐴 𝑦𝐵 } )
3 df-rel ( Rel { 𝑦 ∣ ∃ 𝑥𝐴 𝑦𝐵 } ↔ { 𝑦 ∣ ∃ 𝑥𝐴 𝑦𝐵 } ⊆ ( V × V ) )
4 abss ( { 𝑦 ∣ ∃ 𝑥𝐴 𝑦𝐵 } ⊆ ( V × V ) ↔ ∀ 𝑦 ( ∃ 𝑥𝐴 𝑦𝐵𝑦 ∈ ( V × V ) ) )
5 df-rel ( Rel 𝐵𝐵 ⊆ ( V × V ) )
6 dfss2 ( 𝐵 ⊆ ( V × V ) ↔ ∀ 𝑦 ( 𝑦𝐵𝑦 ∈ ( V × V ) ) )
7 5 6 bitri ( Rel 𝐵 ↔ ∀ 𝑦 ( 𝑦𝐵𝑦 ∈ ( V × V ) ) )
8 7 ralbii ( ∀ 𝑥𝐴 Rel 𝐵 ↔ ∀ 𝑥𝐴𝑦 ( 𝑦𝐵𝑦 ∈ ( V × V ) ) )
9 ralcom4 ( ∀ 𝑥𝐴𝑦 ( 𝑦𝐵𝑦 ∈ ( V × V ) ) ↔ ∀ 𝑦𝑥𝐴 ( 𝑦𝐵𝑦 ∈ ( V × V ) ) )
10 r19.23v ( ∀ 𝑥𝐴 ( 𝑦𝐵𝑦 ∈ ( V × V ) ) ↔ ( ∃ 𝑥𝐴 𝑦𝐵𝑦 ∈ ( V × V ) ) )
11 10 albii ( ∀ 𝑦𝑥𝐴 ( 𝑦𝐵𝑦 ∈ ( V × V ) ) ↔ ∀ 𝑦 ( ∃ 𝑥𝐴 𝑦𝐵𝑦 ∈ ( V × V ) ) )
12 8 9 11 3bitri ( ∀ 𝑥𝐴 Rel 𝐵 ↔ ∀ 𝑦 ( ∃ 𝑥𝐴 𝑦𝐵𝑦 ∈ ( V × V ) ) )
13 4 12 bitr4i ( { 𝑦 ∣ ∃ 𝑥𝐴 𝑦𝐵 } ⊆ ( V × V ) ↔ ∀ 𝑥𝐴 Rel 𝐵 )
14 2 3 13 3bitri ( Rel 𝑥𝐴 𝐵 ↔ ∀ 𝑥𝐴 Rel 𝐵 )