Step |
Hyp |
Ref |
Expression |
1 |
|
df-iun |
⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 } |
2 |
1
|
releqi |
⊢ ( Rel ∪ 𝑥 ∈ 𝐴 𝐵 ↔ Rel { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 } ) |
3 |
|
df-rel |
⊢ ( Rel { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 } ↔ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 } ⊆ ( V × V ) ) |
4 |
|
abss |
⊢ ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 } ⊆ ( V × V ) ↔ ∀ 𝑦 ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ ( V × V ) ) ) |
5 |
|
df-rel |
⊢ ( Rel 𝐵 ↔ 𝐵 ⊆ ( V × V ) ) |
6 |
|
dfss2 |
⊢ ( 𝐵 ⊆ ( V × V ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝑦 ∈ ( V × V ) ) ) |
7 |
5 6
|
bitri |
⊢ ( Rel 𝐵 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝑦 ∈ ( V × V ) ) ) |
8 |
7
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 Rel 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝑦 ∈ ( V × V ) ) ) |
9 |
|
ralcom4 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝑦 ∈ ( V × V ) ) ↔ ∀ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → 𝑦 ∈ ( V × V ) ) ) |
10 |
|
r19.23v |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → 𝑦 ∈ ( V × V ) ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ ( V × V ) ) ) |
11 |
10
|
albii |
⊢ ( ∀ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → 𝑦 ∈ ( V × V ) ) ↔ ∀ 𝑦 ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ ( V × V ) ) ) |
12 |
8 9 11
|
3bitri |
⊢ ( ∀ 𝑥 ∈ 𝐴 Rel 𝐵 ↔ ∀ 𝑦 ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ ( V × V ) ) ) |
13 |
4 12
|
bitr4i |
⊢ ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 } ⊆ ( V × V ) ↔ ∀ 𝑥 ∈ 𝐴 Rel 𝐵 ) |
14 |
2 3 13
|
3bitri |
⊢ ( Rel ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 Rel 𝐵 ) |