Description: Any function to sets of ordered pairs produces a relation on function value unconditionally. (Contributed by Mario Carneiro, 9-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | relmpoopab.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ { 〈 𝑧 , 𝑤 〉 ∣ 𝜑 } ) | |
Assertion | relmpoopab | ⊢ Rel ( 𝐶 𝐹 𝐷 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relmpoopab.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ { 〈 𝑧 , 𝑤 〉 ∣ 𝜑 } ) | |
2 | relopabv | ⊢ Rel { 〈 𝑧 , 𝑤 〉 ∣ 𝜑 } | |
3 | df-rel | ⊢ ( Rel { 〈 𝑧 , 𝑤 〉 ∣ 𝜑 } ↔ { 〈 𝑧 , 𝑤 〉 ∣ 𝜑 } ⊆ ( V × V ) ) | |
4 | 2 3 | mpbi | ⊢ { 〈 𝑧 , 𝑤 〉 ∣ 𝜑 } ⊆ ( V × V ) |
5 | 4 | rgen2w | ⊢ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 { 〈 𝑧 , 𝑤 〉 ∣ 𝜑 } ⊆ ( V × V ) |
6 | 1 | ovmptss | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 { 〈 𝑧 , 𝑤 〉 ∣ 𝜑 } ⊆ ( V × V ) → ( 𝐶 𝐹 𝐷 ) ⊆ ( V × V ) ) |
7 | 5 6 | ax-mp | ⊢ ( 𝐶 𝐹 𝐷 ) ⊆ ( V × V ) |
8 | df-rel | ⊢ ( Rel ( 𝐶 𝐹 𝐷 ) ↔ ( 𝐶 𝐹 𝐷 ) ⊆ ( V × V ) ) | |
9 | 7 8 | mpbir | ⊢ Rel ( 𝐶 𝐹 𝐷 ) |