Description: Any function to sets of ordered pairs produces a relation on function value unconditionally. (Contributed by Mario Carneiro, 9-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | relmpoopab.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ { 〈 𝑧 , 𝑤 〉 ∣ 𝜑 } ) | |
| Assertion | relmpoopab | ⊢ Rel ( 𝐶 𝐹 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relmpoopab.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ { 〈 𝑧 , 𝑤 〉 ∣ 𝜑 } ) | |
| 2 | relopabv | ⊢ Rel { 〈 𝑧 , 𝑤 〉 ∣ 𝜑 } | |
| 3 | df-rel | ⊢ ( Rel { 〈 𝑧 , 𝑤 〉 ∣ 𝜑 } ↔ { 〈 𝑧 , 𝑤 〉 ∣ 𝜑 } ⊆ ( V × V ) ) | |
| 4 | 2 3 | mpbi | ⊢ { 〈 𝑧 , 𝑤 〉 ∣ 𝜑 } ⊆ ( V × V ) |
| 5 | 4 | rgen2w | ⊢ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 { 〈 𝑧 , 𝑤 〉 ∣ 𝜑 } ⊆ ( V × V ) |
| 6 | 1 | ovmptss | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 { 〈 𝑧 , 𝑤 〉 ∣ 𝜑 } ⊆ ( V × V ) → ( 𝐶 𝐹 𝐷 ) ⊆ ( V × V ) ) |
| 7 | 5 6 | ax-mp | ⊢ ( 𝐶 𝐹 𝐷 ) ⊆ ( V × V ) |
| 8 | df-rel | ⊢ ( Rel ( 𝐶 𝐹 𝐷 ) ↔ ( 𝐶 𝐹 𝐷 ) ⊆ ( V × V ) ) | |
| 9 | 7 8 | mpbir | ⊢ Rel ( 𝐶 𝐹 𝐷 ) |