Metamath Proof Explorer


Theorem relmpoopab

Description: Any function to sets of ordered pairs produces a relation on function value unconditionally. (Contributed by Mario Carneiro, 9-Feb-2015)

Ref Expression
Hypothesis relmpoopab.1 𝐹 = ( 𝑥𝐴 , 𝑦𝐵 ↦ { ⟨ 𝑧 , 𝑤 ⟩ ∣ 𝜑 } )
Assertion relmpoopab Rel ( 𝐶 𝐹 𝐷 )

Proof

Step Hyp Ref Expression
1 relmpoopab.1 𝐹 = ( 𝑥𝐴 , 𝑦𝐵 ↦ { ⟨ 𝑧 , 𝑤 ⟩ ∣ 𝜑 } )
2 relopabv Rel { ⟨ 𝑧 , 𝑤 ⟩ ∣ 𝜑 }
3 df-rel ( Rel { ⟨ 𝑧 , 𝑤 ⟩ ∣ 𝜑 } ↔ { ⟨ 𝑧 , 𝑤 ⟩ ∣ 𝜑 } ⊆ ( V × V ) )
4 2 3 mpbi { ⟨ 𝑧 , 𝑤 ⟩ ∣ 𝜑 } ⊆ ( V × V )
5 4 rgen2w 𝑥𝐴𝑦𝐵 { ⟨ 𝑧 , 𝑤 ⟩ ∣ 𝜑 } ⊆ ( V × V )
6 1 ovmptss ( ∀ 𝑥𝐴𝑦𝐵 { ⟨ 𝑧 , 𝑤 ⟩ ∣ 𝜑 } ⊆ ( V × V ) → ( 𝐶 𝐹 𝐷 ) ⊆ ( V × V ) )
7 5 6 ax-mp ( 𝐶 𝐹 𝐷 ) ⊆ ( V × V )
8 df-rel ( Rel ( 𝐶 𝐹 𝐷 ) ↔ ( 𝐶 𝐹 𝐷 ) ⊆ ( V × V ) )
9 7 8 mpbir Rel ( 𝐶 𝐹 𝐷 )