Description: Any function to sets of ordered pairs produces a relation on function value unconditionally. (Contributed by Mario Carneiro, 7-Aug-2014) (Proof shortened by Mario Carneiro, 24-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | relmptopab.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ { 〈 𝑦 , 𝑧 〉 ∣ 𝜑 } ) | |
Assertion | relmptopab | ⊢ Rel ( 𝐹 ‘ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relmptopab.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ { 〈 𝑦 , 𝑧 〉 ∣ 𝜑 } ) | |
2 | 1 | fvmptss | ⊢ ( ∀ 𝑥 ∈ 𝐴 { 〈 𝑦 , 𝑧 〉 ∣ 𝜑 } ⊆ ( V × V ) → ( 𝐹 ‘ 𝐵 ) ⊆ ( V × V ) ) |
3 | relopab | ⊢ Rel { 〈 𝑦 , 𝑧 〉 ∣ 𝜑 } | |
4 | df-rel | ⊢ ( Rel { 〈 𝑦 , 𝑧 〉 ∣ 𝜑 } ↔ { 〈 𝑦 , 𝑧 〉 ∣ 𝜑 } ⊆ ( V × V ) ) | |
5 | 3 4 | mpbi | ⊢ { 〈 𝑦 , 𝑧 〉 ∣ 𝜑 } ⊆ ( V × V ) |
6 | 5 | a1i | ⊢ ( 𝑥 ∈ 𝐴 → { 〈 𝑦 , 𝑧 〉 ∣ 𝜑 } ⊆ ( V × V ) ) |
7 | 2 6 | mprg | ⊢ ( 𝐹 ‘ 𝐵 ) ⊆ ( V × V ) |
8 | df-rel | ⊢ ( Rel ( 𝐹 ‘ 𝐵 ) ↔ ( 𝐹 ‘ 𝐵 ) ⊆ ( V × V ) ) | |
9 | 7 8 | mpbir | ⊢ Rel ( 𝐹 ‘ 𝐵 ) |