Metamath Proof Explorer


Theorem relmptopab

Description: Any function to sets of ordered pairs produces a relation on function value unconditionally. (Contributed by Mario Carneiro, 7-Aug-2014) (Proof shortened by Mario Carneiro, 24-Dec-2016)

Ref Expression
Hypothesis relmptopab.1 𝐹 = ( 𝑥𝐴 ↦ { ⟨ 𝑦 , 𝑧 ⟩ ∣ 𝜑 } )
Assertion relmptopab Rel ( 𝐹𝐵 )

Proof

Step Hyp Ref Expression
1 relmptopab.1 𝐹 = ( 𝑥𝐴 ↦ { ⟨ 𝑦 , 𝑧 ⟩ ∣ 𝜑 } )
2 1 fvmptss ( ∀ 𝑥𝐴 { ⟨ 𝑦 , 𝑧 ⟩ ∣ 𝜑 } ⊆ ( V × V ) → ( 𝐹𝐵 ) ⊆ ( V × V ) )
3 relopab Rel { ⟨ 𝑦 , 𝑧 ⟩ ∣ 𝜑 }
4 df-rel ( Rel { ⟨ 𝑦 , 𝑧 ⟩ ∣ 𝜑 } ↔ { ⟨ 𝑦 , 𝑧 ⟩ ∣ 𝜑 } ⊆ ( V × V ) )
5 3 4 mpbi { ⟨ 𝑦 , 𝑧 ⟩ ∣ 𝜑 } ⊆ ( V × V )
6 5 a1i ( 𝑥𝐴 → { ⟨ 𝑦 , 𝑧 ⟩ ∣ 𝜑 } ⊆ ( V × V ) )
7 2 6 mprg ( 𝐹𝐵 ) ⊆ ( V × V )
8 df-rel ( Rel ( 𝐹𝐵 ) ↔ ( 𝐹𝐵 ) ⊆ ( V × V ) )
9 7 8 mpbir Rel ( 𝐹𝐵 )