Metamath Proof Explorer


Theorem relogbcl

Description: Closure of the general logarithm with a positive real base on positive reals. (Contributed by Stefan O'Rear, 19-Sep-2014) (Revised by Thierry Arnoux, 27-Sep-2017)

Ref Expression
Assertion relogbcl ( ( 𝐵 ∈ ℝ+𝑋 ∈ ℝ+𝐵 ≠ 1 ) → ( 𝐵 logb 𝑋 ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 simp1 ( ( 𝐵 ∈ ℝ+𝑋 ∈ ℝ+𝐵 ≠ 1 ) → 𝐵 ∈ ℝ+ )
2 1 rpcnne0d ( ( 𝐵 ∈ ℝ+𝑋 ∈ ℝ+𝐵 ≠ 1 ) → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) )
3 simp3 ( ( 𝐵 ∈ ℝ+𝑋 ∈ ℝ+𝐵 ≠ 1 ) → 𝐵 ≠ 1 )
4 df-3an ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) ↔ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ 𝐵 ≠ 1 ) )
5 2 3 4 sylanbrc ( ( 𝐵 ∈ ℝ+𝑋 ∈ ℝ+𝐵 ≠ 1 ) → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) )
6 eldifpr ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ↔ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) )
7 5 6 sylibr ( ( 𝐵 ∈ ℝ+𝑋 ∈ ℝ+𝐵 ≠ 1 ) → 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) )
8 simp2 ( ( 𝐵 ∈ ℝ+𝑋 ∈ ℝ+𝐵 ≠ 1 ) → 𝑋 ∈ ℝ+ )
9 8 rpcnne0d ( ( 𝐵 ∈ ℝ+𝑋 ∈ ℝ+𝐵 ≠ 1 ) → ( 𝑋 ∈ ℂ ∧ 𝑋 ≠ 0 ) )
10 eldifsn ( 𝑋 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝑋 ∈ ℂ ∧ 𝑋 ≠ 0 ) )
11 9 10 sylibr ( ( 𝐵 ∈ ℝ+𝑋 ∈ ℝ+𝐵 ≠ 1 ) → 𝑋 ∈ ( ℂ ∖ { 0 } ) )
12 logbval ( ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ 𝑋 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝐵 logb 𝑋 ) = ( ( log ‘ 𝑋 ) / ( log ‘ 𝐵 ) ) )
13 7 11 12 syl2anc ( ( 𝐵 ∈ ℝ+𝑋 ∈ ℝ+𝐵 ≠ 1 ) → ( 𝐵 logb 𝑋 ) = ( ( log ‘ 𝑋 ) / ( log ‘ 𝐵 ) ) )
14 relogcl ( 𝑋 ∈ ℝ+ → ( log ‘ 𝑋 ) ∈ ℝ )
15 14 3ad2ant2 ( ( 𝐵 ∈ ℝ+𝑋 ∈ ℝ+𝐵 ≠ 1 ) → ( log ‘ 𝑋 ) ∈ ℝ )
16 relogcl ( 𝐵 ∈ ℝ+ → ( log ‘ 𝐵 ) ∈ ℝ )
17 16 3ad2ant1 ( ( 𝐵 ∈ ℝ+𝑋 ∈ ℝ+𝐵 ≠ 1 ) → ( log ‘ 𝐵 ) ∈ ℝ )
18 logne0 ( ( 𝐵 ∈ ℝ+𝐵 ≠ 1 ) → ( log ‘ 𝐵 ) ≠ 0 )
19 18 3adant2 ( ( 𝐵 ∈ ℝ+𝑋 ∈ ℝ+𝐵 ≠ 1 ) → ( log ‘ 𝐵 ) ≠ 0 )
20 15 17 19 redivcld ( ( 𝐵 ∈ ℝ+𝑋 ∈ ℝ+𝐵 ≠ 1 ) → ( ( log ‘ 𝑋 ) / ( log ‘ 𝐵 ) ) ∈ ℝ )
21 13 20 eqeltrd ( ( 𝐵 ∈ ℝ+𝑋 ∈ ℝ+𝐵 ≠ 1 ) → ( 𝐵 logb 𝑋 ) ∈ ℝ )