Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝑋 ∈ ℝ+ ∧ 𝐵 ≠ 1 ) → 𝐵 ∈ ℝ+ ) |
2 |
1
|
rpcnne0d |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝑋 ∈ ℝ+ ∧ 𝐵 ≠ 1 ) → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) |
3 |
|
simp3 |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝑋 ∈ ℝ+ ∧ 𝐵 ≠ 1 ) → 𝐵 ≠ 1 ) |
4 |
|
df-3an |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) ↔ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ 𝐵 ≠ 1 ) ) |
5 |
2 3 4
|
sylanbrc |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝑋 ∈ ℝ+ ∧ 𝐵 ≠ 1 ) → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) ) |
6 |
|
eldifpr |
⊢ ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ↔ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) ) |
7 |
5 6
|
sylibr |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝑋 ∈ ℝ+ ∧ 𝐵 ≠ 1 ) → 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ) |
8 |
|
simp2 |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝑋 ∈ ℝ+ ∧ 𝐵 ≠ 1 ) → 𝑋 ∈ ℝ+ ) |
9 |
8
|
rpcnne0d |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝑋 ∈ ℝ+ ∧ 𝐵 ≠ 1 ) → ( 𝑋 ∈ ℂ ∧ 𝑋 ≠ 0 ) ) |
10 |
|
eldifsn |
⊢ ( 𝑋 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝑋 ∈ ℂ ∧ 𝑋 ≠ 0 ) ) |
11 |
9 10
|
sylibr |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝑋 ∈ ℝ+ ∧ 𝐵 ≠ 1 ) → 𝑋 ∈ ( ℂ ∖ { 0 } ) ) |
12 |
|
logbval |
⊢ ( ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ 𝑋 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝐵 logb 𝑋 ) = ( ( log ‘ 𝑋 ) / ( log ‘ 𝐵 ) ) ) |
13 |
7 11 12
|
syl2anc |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝑋 ∈ ℝ+ ∧ 𝐵 ≠ 1 ) → ( 𝐵 logb 𝑋 ) = ( ( log ‘ 𝑋 ) / ( log ‘ 𝐵 ) ) ) |
14 |
|
relogcl |
⊢ ( 𝑋 ∈ ℝ+ → ( log ‘ 𝑋 ) ∈ ℝ ) |
15 |
14
|
3ad2ant2 |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝑋 ∈ ℝ+ ∧ 𝐵 ≠ 1 ) → ( log ‘ 𝑋 ) ∈ ℝ ) |
16 |
|
relogcl |
⊢ ( 𝐵 ∈ ℝ+ → ( log ‘ 𝐵 ) ∈ ℝ ) |
17 |
16
|
3ad2ant1 |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝑋 ∈ ℝ+ ∧ 𝐵 ≠ 1 ) → ( log ‘ 𝐵 ) ∈ ℝ ) |
18 |
|
logne0 |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1 ) → ( log ‘ 𝐵 ) ≠ 0 ) |
19 |
18
|
3adant2 |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝑋 ∈ ℝ+ ∧ 𝐵 ≠ 1 ) → ( log ‘ 𝐵 ) ≠ 0 ) |
20 |
15 17 19
|
redivcld |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝑋 ∈ ℝ+ ∧ 𝐵 ≠ 1 ) → ( ( log ‘ 𝑋 ) / ( log ‘ 𝐵 ) ) ∈ ℝ ) |
21 |
13 20
|
eqeltrd |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝑋 ∈ ℝ+ ∧ 𝐵 ≠ 1 ) → ( 𝐵 logb 𝑋 ) ∈ ℝ ) |