Step |
Hyp |
Ref |
Expression |
1 |
|
eldifsn |
⊢ ( 𝐵 ∈ ( ℝ+ ∖ { 1 } ) ↔ ( 𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1 ) ) |
2 |
|
rpcn |
⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ∈ ℂ ) |
3 |
2
|
adantr |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1 ) → 𝐵 ∈ ℂ ) |
4 |
|
rpne0 |
⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ≠ 0 ) |
5 |
4
|
adantr |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1 ) → 𝐵 ≠ 0 ) |
6 |
|
simpr |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1 ) → 𝐵 ≠ 1 ) |
7 |
|
eldifpr |
⊢ ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ↔ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) ) |
8 |
3 5 6 7
|
syl3anbrc |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1 ) → 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ) |
9 |
1 8
|
sylbi |
⊢ ( 𝐵 ∈ ( ℝ+ ∖ { 1 } ) → 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ) |
10 |
|
eldifi |
⊢ ( 𝐵 ∈ ( ℝ+ ∖ { 1 } ) → 𝐵 ∈ ℝ+ ) |
11 |
10 2
|
syl |
⊢ ( 𝐵 ∈ ( ℝ+ ∖ { 1 } ) → 𝐵 ∈ ℂ ) |
12 |
|
recn |
⊢ ( 𝑋 ∈ ℝ → 𝑋 ∈ ℂ ) |
13 |
|
cxpcl |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝑋 ∈ ℂ ) → ( 𝐵 ↑𝑐 𝑋 ) ∈ ℂ ) |
14 |
11 12 13
|
syl2an |
⊢ ( ( 𝐵 ∈ ( ℝ+ ∖ { 1 } ) ∧ 𝑋 ∈ ℝ ) → ( 𝐵 ↑𝑐 𝑋 ) ∈ ℂ ) |
15 |
11
|
adantr |
⊢ ( ( 𝐵 ∈ ( ℝ+ ∖ { 1 } ) ∧ 𝑋 ∈ ℝ ) → 𝐵 ∈ ℂ ) |
16 |
1 5
|
sylbi |
⊢ ( 𝐵 ∈ ( ℝ+ ∖ { 1 } ) → 𝐵 ≠ 0 ) |
17 |
16
|
adantr |
⊢ ( ( 𝐵 ∈ ( ℝ+ ∖ { 1 } ) ∧ 𝑋 ∈ ℝ ) → 𝐵 ≠ 0 ) |
18 |
12
|
adantl |
⊢ ( ( 𝐵 ∈ ( ℝ+ ∖ { 1 } ) ∧ 𝑋 ∈ ℝ ) → 𝑋 ∈ ℂ ) |
19 |
15 17 18
|
cxpne0d |
⊢ ( ( 𝐵 ∈ ( ℝ+ ∖ { 1 } ) ∧ 𝑋 ∈ ℝ ) → ( 𝐵 ↑𝑐 𝑋 ) ≠ 0 ) |
20 |
|
eldifsn |
⊢ ( ( 𝐵 ↑𝑐 𝑋 ) ∈ ( ℂ ∖ { 0 } ) ↔ ( ( 𝐵 ↑𝑐 𝑋 ) ∈ ℂ ∧ ( 𝐵 ↑𝑐 𝑋 ) ≠ 0 ) ) |
21 |
14 19 20
|
sylanbrc |
⊢ ( ( 𝐵 ∈ ( ℝ+ ∖ { 1 } ) ∧ 𝑋 ∈ ℝ ) → ( 𝐵 ↑𝑐 𝑋 ) ∈ ( ℂ ∖ { 0 } ) ) |
22 |
|
logbval |
⊢ ( ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ ( 𝐵 ↑𝑐 𝑋 ) ∈ ( ℂ ∖ { 0 } ) ) → ( 𝐵 logb ( 𝐵 ↑𝑐 𝑋 ) ) = ( ( log ‘ ( 𝐵 ↑𝑐 𝑋 ) ) / ( log ‘ 𝐵 ) ) ) |
23 |
9 21 22
|
syl2an2r |
⊢ ( ( 𝐵 ∈ ( ℝ+ ∖ { 1 } ) ∧ 𝑋 ∈ ℝ ) → ( 𝐵 logb ( 𝐵 ↑𝑐 𝑋 ) ) = ( ( log ‘ ( 𝐵 ↑𝑐 𝑋 ) ) / ( log ‘ 𝐵 ) ) ) |
24 |
|
logcxp |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝑋 ∈ ℝ ) → ( log ‘ ( 𝐵 ↑𝑐 𝑋 ) ) = ( 𝑋 · ( log ‘ 𝐵 ) ) ) |
25 |
10 24
|
sylan |
⊢ ( ( 𝐵 ∈ ( ℝ+ ∖ { 1 } ) ∧ 𝑋 ∈ ℝ ) → ( log ‘ ( 𝐵 ↑𝑐 𝑋 ) ) = ( 𝑋 · ( log ‘ 𝐵 ) ) ) |
26 |
25
|
oveq1d |
⊢ ( ( 𝐵 ∈ ( ℝ+ ∖ { 1 } ) ∧ 𝑋 ∈ ℝ ) → ( ( log ‘ ( 𝐵 ↑𝑐 𝑋 ) ) / ( log ‘ 𝐵 ) ) = ( ( 𝑋 · ( log ‘ 𝐵 ) ) / ( log ‘ 𝐵 ) ) ) |
27 |
|
eldif |
⊢ ( 𝐵 ∈ ( ℝ+ ∖ { 1 } ) ↔ ( 𝐵 ∈ ℝ+ ∧ ¬ 𝐵 ∈ { 1 } ) ) |
28 |
|
rpcnne0 |
⊢ ( 𝐵 ∈ ℝ+ → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) |
29 |
28
|
adantr |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ ¬ 𝐵 ∈ { 1 } ) → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) |
30 |
27 29
|
sylbi |
⊢ ( 𝐵 ∈ ( ℝ+ ∖ { 1 } ) → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) |
31 |
|
logcl |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( log ‘ 𝐵 ) ∈ ℂ ) |
32 |
30 31
|
syl |
⊢ ( 𝐵 ∈ ( ℝ+ ∖ { 1 } ) → ( log ‘ 𝐵 ) ∈ ℂ ) |
33 |
32
|
adantr |
⊢ ( ( 𝐵 ∈ ( ℝ+ ∖ { 1 } ) ∧ 𝑋 ∈ ℝ ) → ( log ‘ 𝐵 ) ∈ ℂ ) |
34 |
|
logne0 |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1 ) → ( log ‘ 𝐵 ) ≠ 0 ) |
35 |
1 34
|
sylbi |
⊢ ( 𝐵 ∈ ( ℝ+ ∖ { 1 } ) → ( log ‘ 𝐵 ) ≠ 0 ) |
36 |
35
|
adantr |
⊢ ( ( 𝐵 ∈ ( ℝ+ ∖ { 1 } ) ∧ 𝑋 ∈ ℝ ) → ( log ‘ 𝐵 ) ≠ 0 ) |
37 |
18 33 36
|
divcan4d |
⊢ ( ( 𝐵 ∈ ( ℝ+ ∖ { 1 } ) ∧ 𝑋 ∈ ℝ ) → ( ( 𝑋 · ( log ‘ 𝐵 ) ) / ( log ‘ 𝐵 ) ) = 𝑋 ) |
38 |
23 26 37
|
3eqtrd |
⊢ ( ( 𝐵 ∈ ( ℝ+ ∖ { 1 } ) ∧ 𝑋 ∈ ℝ ) → ( 𝐵 logb ( 𝐵 ↑𝑐 𝑋 ) ) = 𝑋 ) |