| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							neg1rr | 
							⊢ - 1  ∈  ℝ  | 
						
						
							| 2 | 
							
								
							 | 
							relogbmulexp | 
							⊢ ( ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  ∧  ( 𝐴  ∈  ℝ+  ∧  𝐶  ∈  ℝ+  ∧  - 1  ∈  ℝ ) )  →  ( 𝐵  logb  ( 𝐴  ·  ( 𝐶 ↑𝑐 - 1 ) ) )  =  ( ( 𝐵  logb  𝐴 )  +  ( - 1  ·  ( 𝐵  logb  𝐶 ) ) ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							mp3anr3 | 
							⊢ ( ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  ∧  ( 𝐴  ∈  ℝ+  ∧  𝐶  ∈  ℝ+ ) )  →  ( 𝐵  logb  ( 𝐴  ·  ( 𝐶 ↑𝑐 - 1 ) ) )  =  ( ( 𝐵  logb  𝐴 )  +  ( - 1  ·  ( 𝐵  logb  𝐶 ) ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							rpcn | 
							⊢ ( 𝐴  ∈  ℝ+  →  𝐴  ∈  ℂ )  | 
						
						
							| 5 | 
							
								4
							 | 
							adantr | 
							⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐶  ∈  ℝ+ )  →  𝐴  ∈  ℂ )  | 
						
						
							| 6 | 
							
								
							 | 
							rpcn | 
							⊢ ( 𝐶  ∈  ℝ+  →  𝐶  ∈  ℂ )  | 
						
						
							| 7 | 
							
								6
							 | 
							adantl | 
							⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐶  ∈  ℝ+ )  →  𝐶  ∈  ℂ )  | 
						
						
							| 8 | 
							
								
							 | 
							rpne0 | 
							⊢ ( 𝐶  ∈  ℝ+  →  𝐶  ≠  0 )  | 
						
						
							| 9 | 
							
								8
							 | 
							adantl | 
							⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐶  ∈  ℝ+ )  →  𝐶  ≠  0 )  | 
						
						
							| 10 | 
							
								5 7 9
							 | 
							divrecd | 
							⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐶  ∈  ℝ+ )  →  ( 𝐴  /  𝐶 )  =  ( 𝐴  ·  ( 1  /  𝐶 ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							1cnd | 
							⊢ ( 𝐶  ∈  ℝ+  →  1  ∈  ℂ )  | 
						
						
							| 12 | 
							
								6 8 11
							 | 
							cxpnegd | 
							⊢ ( 𝐶  ∈  ℝ+  →  ( 𝐶 ↑𝑐 - 1 )  =  ( 1  /  ( 𝐶 ↑𝑐 1 ) ) )  | 
						
						
							| 13 | 
							
								6
							 | 
							cxp1d | 
							⊢ ( 𝐶  ∈  ℝ+  →  ( 𝐶 ↑𝑐 1 )  =  𝐶 )  | 
						
						
							| 14 | 
							
								13
							 | 
							oveq2d | 
							⊢ ( 𝐶  ∈  ℝ+  →  ( 1  /  ( 𝐶 ↑𝑐 1 ) )  =  ( 1  /  𝐶 ) )  | 
						
						
							| 15 | 
							
								12 14
							 | 
							eqtrd | 
							⊢ ( 𝐶  ∈  ℝ+  →  ( 𝐶 ↑𝑐 - 1 )  =  ( 1  /  𝐶 ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							adantl | 
							⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐶  ∈  ℝ+ )  →  ( 𝐶 ↑𝑐 - 1 )  =  ( 1  /  𝐶 ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							oveq2d | 
							⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐶  ∈  ℝ+ )  →  ( 𝐴  ·  ( 𝐶 ↑𝑐 - 1 ) )  =  ( 𝐴  ·  ( 1  /  𝐶 ) ) )  | 
						
						
							| 18 | 
							
								10 17
							 | 
							eqtr4d | 
							⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐶  ∈  ℝ+ )  →  ( 𝐴  /  𝐶 )  =  ( 𝐴  ·  ( 𝐶 ↑𝑐 - 1 ) ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							adantl | 
							⊢ ( ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  ∧  ( 𝐴  ∈  ℝ+  ∧  𝐶  ∈  ℝ+ ) )  →  ( 𝐴  /  𝐶 )  =  ( 𝐴  ·  ( 𝐶 ↑𝑐 - 1 ) ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							oveq2d | 
							⊢ ( ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  ∧  ( 𝐴  ∈  ℝ+  ∧  𝐶  ∈  ℝ+ ) )  →  ( 𝐵  logb  ( 𝐴  /  𝐶 ) )  =  ( 𝐵  logb  ( 𝐴  ·  ( 𝐶 ↑𝑐 - 1 ) ) ) )  | 
						
						
							| 21 | 
							
								
							 | 
							rpcndif0 | 
							⊢ ( 𝐶  ∈  ℝ+  →  𝐶  ∈  ( ℂ  ∖  { 0 } ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							adantl | 
							⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐶  ∈  ℝ+ )  →  𝐶  ∈  ( ℂ  ∖  { 0 } ) )  | 
						
						
							| 23 | 
							
								
							 | 
							logbcl | 
							⊢ ( ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  ∧  𝐶  ∈  ( ℂ  ∖  { 0 } ) )  →  ( 𝐵  logb  𝐶 )  ∈  ℂ )  | 
						
						
							| 24 | 
							
								22 23
							 | 
							sylan2 | 
							⊢ ( ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  ∧  ( 𝐴  ∈  ℝ+  ∧  𝐶  ∈  ℝ+ ) )  →  ( 𝐵  logb  𝐶 )  ∈  ℂ )  | 
						
						
							| 25 | 
							
								
							 | 
							mulm1 | 
							⊢ ( ( 𝐵  logb  𝐶 )  ∈  ℂ  →  ( - 1  ·  ( 𝐵  logb  𝐶 ) )  =  - ( 𝐵  logb  𝐶 ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							oveq2d | 
							⊢ ( ( 𝐵  logb  𝐶 )  ∈  ℂ  →  ( ( 𝐵  logb  𝐴 )  +  ( - 1  ·  ( 𝐵  logb  𝐶 ) ) )  =  ( ( 𝐵  logb  𝐴 )  +  - ( 𝐵  logb  𝐶 ) ) )  | 
						
						
							| 27 | 
							
								24 26
							 | 
							syl | 
							⊢ ( ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  ∧  ( 𝐴  ∈  ℝ+  ∧  𝐶  ∈  ℝ+ ) )  →  ( ( 𝐵  logb  𝐴 )  +  ( - 1  ·  ( 𝐵  logb  𝐶 ) ) )  =  ( ( 𝐵  logb  𝐴 )  +  - ( 𝐵  logb  𝐶 ) ) )  | 
						
						
							| 28 | 
							
								
							 | 
							rpcndif0 | 
							⊢ ( 𝐴  ∈  ℝ+  →  𝐴  ∈  ( ℂ  ∖  { 0 } ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							adantr | 
							⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐶  ∈  ℝ+ )  →  𝐴  ∈  ( ℂ  ∖  { 0 } ) )  | 
						
						
							| 30 | 
							
								
							 | 
							logbcl | 
							⊢ ( ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  ∧  𝐴  ∈  ( ℂ  ∖  { 0 } ) )  →  ( 𝐵  logb  𝐴 )  ∈  ℂ )  | 
						
						
							| 31 | 
							
								29 30
							 | 
							sylan2 | 
							⊢ ( ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  ∧  ( 𝐴  ∈  ℝ+  ∧  𝐶  ∈  ℝ+ ) )  →  ( 𝐵  logb  𝐴 )  ∈  ℂ )  | 
						
						
							| 32 | 
							
								31 24
							 | 
							negsubd | 
							⊢ ( ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  ∧  ( 𝐴  ∈  ℝ+  ∧  𝐶  ∈  ℝ+ ) )  →  ( ( 𝐵  logb  𝐴 )  +  - ( 𝐵  logb  𝐶 ) )  =  ( ( 𝐵  logb  𝐴 )  −  ( 𝐵  logb  𝐶 ) ) )  | 
						
						
							| 33 | 
							
								27 32
							 | 
							eqtr2d | 
							⊢ ( ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  ∧  ( 𝐴  ∈  ℝ+  ∧  𝐶  ∈  ℝ+ ) )  →  ( ( 𝐵  logb  𝐴 )  −  ( 𝐵  logb  𝐶 ) )  =  ( ( 𝐵  logb  𝐴 )  +  ( - 1  ·  ( 𝐵  logb  𝐶 ) ) ) )  | 
						
						
							| 34 | 
							
								3 20 33
							 | 
							3eqtr4d | 
							⊢ ( ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  ∧  ( 𝐴  ∈  ℝ+  ∧  𝐶  ∈  ℝ+ ) )  →  ( 𝐵  logb  ( 𝐴  /  𝐶 ) )  =  ( ( 𝐵  logb  𝐴 )  −  ( 𝐵  logb  𝐶 ) ) )  |