Step |
Hyp |
Ref |
Expression |
1 |
|
rpcn |
⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ∈ ℂ ) |
2 |
1
|
adantr |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1 ) → 𝐵 ∈ ℂ ) |
3 |
|
rpne0 |
⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ≠ 0 ) |
4 |
3
|
adantr |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1 ) → 𝐵 ≠ 0 ) |
5 |
|
simpr |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1 ) → 𝐵 ≠ 1 ) |
6 |
2 4 5
|
3jca |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1 ) → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) ) |
7 |
|
eldifpr |
⊢ ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ↔ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) ) |
8 |
6 7
|
sylibr |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1 ) → 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ) |
9 |
|
relogbzexp |
⊢ ( ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ 𝐵 ∈ ℝ+ ∧ 𝑀 ∈ ℤ ) → ( 𝐵 logb ( 𝐵 ↑ 𝑀 ) ) = ( 𝑀 · ( 𝐵 logb 𝐵 ) ) ) |
10 |
8 9
|
stoic4a |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1 ∧ 𝑀 ∈ ℤ ) → ( 𝐵 logb ( 𝐵 ↑ 𝑀 ) ) = ( 𝑀 · ( 𝐵 logb 𝐵 ) ) ) |
11 |
6
|
3adant3 |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1 ∧ 𝑀 ∈ ℤ ) → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) ) |
12 |
|
logbid1 |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) → ( 𝐵 logb 𝐵 ) = 1 ) |
13 |
11 12
|
syl |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1 ∧ 𝑀 ∈ ℤ ) → ( 𝐵 logb 𝐵 ) = 1 ) |
14 |
13
|
oveq2d |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1 ∧ 𝑀 ∈ ℤ ) → ( 𝑀 · ( 𝐵 logb 𝐵 ) ) = ( 𝑀 · 1 ) ) |
15 |
|
zcn |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ ) |
16 |
15
|
3ad2ant3 |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1 ∧ 𝑀 ∈ ℤ ) → 𝑀 ∈ ℂ ) |
17 |
16
|
mulid1d |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1 ∧ 𝑀 ∈ ℤ ) → ( 𝑀 · 1 ) = 𝑀 ) |
18 |
10 14 17
|
3eqtrd |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1 ∧ 𝑀 ∈ ℤ ) → ( 𝐵 logb ( 𝐵 ↑ 𝑀 ) ) = 𝑀 ) |