Step |
Hyp |
Ref |
Expression |
1 |
|
zgt1rpn0n1 |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) ) |
2 |
1
|
adantr |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → ( 𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) ) |
3 |
2
|
simp1d |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → 𝐵 ∈ ℝ+ ) |
4 |
3
|
rpcnd |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → 𝐵 ∈ ℂ ) |
5 |
2
|
simp2d |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → 𝐵 ≠ 0 ) |
6 |
2
|
simp3d |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → 𝐵 ≠ 1 ) |
7 |
|
eldifpr |
⊢ ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ↔ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) ) |
8 |
4 5 6 7
|
syl3anbrc |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ) |
9 |
|
simpr |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → 𝑋 ∈ ℝ+ ) |
10 |
9
|
rpcnne0d |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → ( 𝑋 ∈ ℂ ∧ 𝑋 ≠ 0 ) ) |
11 |
|
eldifsn |
⊢ ( 𝑋 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝑋 ∈ ℂ ∧ 𝑋 ≠ 0 ) ) |
12 |
10 11
|
sylibr |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → 𝑋 ∈ ( ℂ ∖ { 0 } ) ) |
13 |
|
logbval |
⊢ ( ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ 𝑋 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝐵 logb 𝑋 ) = ( ( log ‘ 𝑋 ) / ( log ‘ 𝐵 ) ) ) |
14 |
8 12 13
|
syl2anc |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → ( 𝐵 logb 𝑋 ) = ( ( log ‘ 𝑋 ) / ( log ‘ 𝐵 ) ) ) |