Metamath Proof Explorer


Theorem relogbval

Description: Value of the general logarithm with integer base. (Contributed by Thierry Arnoux, 27-Sep-2017)

Ref Expression
Assertion relogbval ( ( 𝐵 ∈ ( ℤ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → ( 𝐵 logb 𝑋 ) = ( ( log ‘ 𝑋 ) / ( log ‘ 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 zgt1rpn0n1 ( 𝐵 ∈ ( ℤ ‘ 2 ) → ( 𝐵 ∈ ℝ+𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) )
2 1 adantr ( ( 𝐵 ∈ ( ℤ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → ( 𝐵 ∈ ℝ+𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) )
3 2 simp1d ( ( 𝐵 ∈ ( ℤ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → 𝐵 ∈ ℝ+ )
4 3 rpcnd ( ( 𝐵 ∈ ( ℤ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → 𝐵 ∈ ℂ )
5 2 simp2d ( ( 𝐵 ∈ ( ℤ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → 𝐵 ≠ 0 )
6 2 simp3d ( ( 𝐵 ∈ ( ℤ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → 𝐵 ≠ 1 )
7 eldifpr ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ↔ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) )
8 4 5 6 7 syl3anbrc ( ( 𝐵 ∈ ( ℤ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) )
9 simpr ( ( 𝐵 ∈ ( ℤ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → 𝑋 ∈ ℝ+ )
10 9 rpcnne0d ( ( 𝐵 ∈ ( ℤ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → ( 𝑋 ∈ ℂ ∧ 𝑋 ≠ 0 ) )
11 eldifsn ( 𝑋 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝑋 ∈ ℂ ∧ 𝑋 ≠ 0 ) )
12 10 11 sylibr ( ( 𝐵 ∈ ( ℤ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → 𝑋 ∈ ( ℂ ∖ { 0 } ) )
13 logbval ( ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ 𝑋 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝐵 logb 𝑋 ) = ( ( log ‘ 𝑋 ) / ( log ‘ 𝐵 ) ) )
14 8 12 13 syl2anc ( ( 𝐵 ∈ ( ℤ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → ( 𝐵 logb 𝑋 ) = ( ( log ‘ 𝑋 ) / ( log ‘ 𝐵 ) ) )