Metamath Proof Explorer


Theorem relogbzcl

Description: Closure of the general logarithm with integer base on positive reals. (Contributed by Thierry Arnoux, 27-Sep-2017) (Proof shortened by AV, 9-Jun-2020)

Ref Expression
Assertion relogbzcl ( ( 𝐵 ∈ ( ℤ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → ( 𝐵 logb 𝑋 ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 zgt1rpn0n1 ( 𝐵 ∈ ( ℤ ‘ 2 ) → ( 𝐵 ∈ ℝ+𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) )
2 relogbcl ( ( 𝐵 ∈ ℝ+𝑋 ∈ ℝ+𝐵 ≠ 1 ) → ( 𝐵 logb 𝑋 ) ∈ ℝ )
3 2 3com23 ( ( 𝐵 ∈ ℝ+𝐵 ≠ 1 ∧ 𝑋 ∈ ℝ+ ) → ( 𝐵 logb 𝑋 ) ∈ ℝ )
4 3 3expia ( ( 𝐵 ∈ ℝ+𝐵 ≠ 1 ) → ( 𝑋 ∈ ℝ+ → ( 𝐵 logb 𝑋 ) ∈ ℝ ) )
5 4 3adant2 ( ( 𝐵 ∈ ℝ+𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) → ( 𝑋 ∈ ℝ+ → ( 𝐵 logb 𝑋 ) ∈ ℝ ) )
6 1 5 syl ( 𝐵 ∈ ( ℤ ‘ 2 ) → ( 𝑋 ∈ ℝ+ → ( 𝐵 logb 𝑋 ) ∈ ℝ ) )
7 6 imp ( ( 𝐵 ∈ ( ℤ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → ( 𝐵 logb 𝑋 ) ∈ ℝ )