Description: Closure of the natural logarithm function on positive reals. (Contributed by Steve Rodriguez, 25-Nov-2007)
Ref | Expression | ||
---|---|---|---|
Assertion | relogcl | ⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℝ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvres | ⊢ ( 𝐴 ∈ ℝ+ → ( ( log ↾ ℝ+ ) ‘ 𝐴 ) = ( log ‘ 𝐴 ) ) | |
2 | relogf1o | ⊢ ( log ↾ ℝ+ ) : ℝ+ –1-1-onto→ ℝ | |
3 | f1of | ⊢ ( ( log ↾ ℝ+ ) : ℝ+ –1-1-onto→ ℝ → ( log ↾ ℝ+ ) : ℝ+ ⟶ ℝ ) | |
4 | 2 3 | ax-mp | ⊢ ( log ↾ ℝ+ ) : ℝ+ ⟶ ℝ |
5 | 4 | ffvelrni | ⊢ ( 𝐴 ∈ ℝ+ → ( ( log ↾ ℝ+ ) ‘ 𝐴 ) ∈ ℝ ) |
6 | 1 5 | eqeltrrd | ⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℝ ) |