Metamath Proof Explorer


Theorem relogcld

Description: Closure of the natural logarithm function. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypothesis relogcld.1 ( 𝜑𝐴 ∈ ℝ+ )
Assertion relogcld ( 𝜑 → ( log ‘ 𝐴 ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 relogcld.1 ( 𝜑𝐴 ∈ ℝ+ )
2 relogcl ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℝ )
3 1 2 syl ( 𝜑 → ( log ‘ 𝐴 ) ∈ ℝ )