Metamath Proof Explorer


Theorem relogeftb

Description: Relationship between the natural logarithm function and the exponential function. (Contributed by Steve Rodriguez, 25-Nov-2007)

Ref Expression
Assertion relogeftb ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ ) → ( ( log ‘ 𝐴 ) = 𝐵 ↔ ( exp ‘ 𝐵 ) = 𝐴 ) )

Proof

Step Hyp Ref Expression
1 rpcnne0 ( 𝐴 ∈ ℝ+ → ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) )
2 relogrn ( 𝐵 ∈ ℝ → 𝐵 ∈ ran log )
3 logeftb ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ran log ) → ( ( log ‘ 𝐴 ) = 𝐵 ↔ ( exp ‘ 𝐵 ) = 𝐴 ) )
4 3 3expa ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ran log ) → ( ( log ‘ 𝐴 ) = 𝐵 ↔ ( exp ‘ 𝐵 ) = 𝐴 ) )
5 1 2 4 syl2an ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ ) → ( ( log ‘ 𝐴 ) = 𝐵 ↔ ( exp ‘ 𝐵 ) = 𝐴 ) )