Description: Relationship between the natural logarithm function and the exponential function. (Contributed by Steve Rodriguez, 25-Nov-2007)
Ref | Expression | ||
---|---|---|---|
Assertion | relogeftb | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ) → ( ( log ‘ 𝐴 ) = 𝐵 ↔ ( exp ‘ 𝐵 ) = 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpcnne0 | ⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) | |
2 | relogrn | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ran log ) | |
3 | logeftb | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ran log ) → ( ( log ‘ 𝐴 ) = 𝐵 ↔ ( exp ‘ 𝐵 ) = 𝐴 ) ) | |
4 | 3 | 3expa | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ran log ) → ( ( log ‘ 𝐴 ) = 𝐵 ↔ ( exp ‘ 𝐵 ) = 𝐴 ) ) |
5 | 1 2 4 | syl2an | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ) → ( ( log ‘ 𝐴 ) = 𝐵 ↔ ( exp ‘ 𝐵 ) = 𝐴 ) ) |