| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relogcl |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℝ ) |
| 2 |
1
|
recnd |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 3 |
|
efexp |
⊢ ( ( ( log ‘ 𝐴 ) ∈ ℂ ∧ 𝑁 ∈ ℤ ) → ( exp ‘ ( 𝑁 · ( log ‘ 𝐴 ) ) ) = ( ( exp ‘ ( log ‘ 𝐴 ) ) ↑ 𝑁 ) ) |
| 4 |
2 3
|
sylan |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) → ( exp ‘ ( 𝑁 · ( log ‘ 𝐴 ) ) ) = ( ( exp ‘ ( log ‘ 𝐴 ) ) ↑ 𝑁 ) ) |
| 5 |
|
reeflog |
⊢ ( 𝐴 ∈ ℝ+ → ( exp ‘ ( log ‘ 𝐴 ) ) = 𝐴 ) |
| 6 |
5
|
oveq1d |
⊢ ( 𝐴 ∈ ℝ+ → ( ( exp ‘ ( log ‘ 𝐴 ) ) ↑ 𝑁 ) = ( 𝐴 ↑ 𝑁 ) ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) → ( ( exp ‘ ( log ‘ 𝐴 ) ) ↑ 𝑁 ) = ( 𝐴 ↑ 𝑁 ) ) |
| 8 |
4 7
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) → ( exp ‘ ( 𝑁 · ( log ‘ 𝐴 ) ) ) = ( 𝐴 ↑ 𝑁 ) ) |
| 9 |
8
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) → ( log ‘ ( exp ‘ ( 𝑁 · ( log ‘ 𝐴 ) ) ) ) = ( log ‘ ( 𝐴 ↑ 𝑁 ) ) ) |
| 10 |
|
zre |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) |
| 11 |
|
remulcl |
⊢ ( ( 𝑁 ∈ ℝ ∧ ( log ‘ 𝐴 ) ∈ ℝ ) → ( 𝑁 · ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 12 |
10 1 11
|
syl2anr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 · ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 13 |
|
relogef |
⊢ ( ( 𝑁 · ( log ‘ 𝐴 ) ) ∈ ℝ → ( log ‘ ( exp ‘ ( 𝑁 · ( log ‘ 𝐴 ) ) ) ) = ( 𝑁 · ( log ‘ 𝐴 ) ) ) |
| 14 |
12 13
|
syl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) → ( log ‘ ( exp ‘ ( 𝑁 · ( log ‘ 𝐴 ) ) ) ) = ( 𝑁 · ( log ‘ 𝐴 ) ) ) |
| 15 |
9 14
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) → ( log ‘ ( 𝐴 ↑ 𝑁 ) ) = ( 𝑁 · ( log ‘ 𝐴 ) ) ) |