Step |
Hyp |
Ref |
Expression |
1 |
|
eff1o2 |
⊢ ( exp ↾ ran log ) : ran log –1-1-onto→ ( ℂ ∖ { 0 } ) |
2 |
|
dff1o3 |
⊢ ( ( exp ↾ ran log ) : ran log –1-1-onto→ ( ℂ ∖ { 0 } ) ↔ ( ( exp ↾ ran log ) : ran log –onto→ ( ℂ ∖ { 0 } ) ∧ Fun ◡ ( exp ↾ ran log ) ) ) |
3 |
2
|
simprbi |
⊢ ( ( exp ↾ ran log ) : ran log –1-1-onto→ ( ℂ ∖ { 0 } ) → Fun ◡ ( exp ↾ ran log ) ) |
4 |
1 3
|
ax-mp |
⊢ Fun ◡ ( exp ↾ ran log ) |
5 |
|
reeff1o |
⊢ ( exp ↾ ℝ ) : ℝ –1-1-onto→ ℝ+ |
6 |
|
relogrn |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ran log ) |
7 |
6
|
ssriv |
⊢ ℝ ⊆ ran log |
8 |
|
resabs1 |
⊢ ( ℝ ⊆ ran log → ( ( exp ↾ ran log ) ↾ ℝ ) = ( exp ↾ ℝ ) ) |
9 |
|
f1oeq1 |
⊢ ( ( ( exp ↾ ran log ) ↾ ℝ ) = ( exp ↾ ℝ ) → ( ( ( exp ↾ ran log ) ↾ ℝ ) : ℝ –1-1-onto→ ℝ+ ↔ ( exp ↾ ℝ ) : ℝ –1-1-onto→ ℝ+ ) ) |
10 |
7 8 9
|
mp2b |
⊢ ( ( ( exp ↾ ran log ) ↾ ℝ ) : ℝ –1-1-onto→ ℝ+ ↔ ( exp ↾ ℝ ) : ℝ –1-1-onto→ ℝ+ ) |
11 |
5 10
|
mpbir |
⊢ ( ( exp ↾ ran log ) ↾ ℝ ) : ℝ –1-1-onto→ ℝ+ |
12 |
|
f1orescnv |
⊢ ( ( Fun ◡ ( exp ↾ ran log ) ∧ ( ( exp ↾ ran log ) ↾ ℝ ) : ℝ –1-1-onto→ ℝ+ ) → ( ◡ ( exp ↾ ran log ) ↾ ℝ+ ) : ℝ+ –1-1-onto→ ℝ ) |
13 |
4 11 12
|
mp2an |
⊢ ( ◡ ( exp ↾ ran log ) ↾ ℝ+ ) : ℝ+ –1-1-onto→ ℝ |
14 |
|
dflog2 |
⊢ log = ◡ ( exp ↾ ran log ) |
15 |
|
reseq1 |
⊢ ( log = ◡ ( exp ↾ ran log ) → ( log ↾ ℝ+ ) = ( ◡ ( exp ↾ ran log ) ↾ ℝ+ ) ) |
16 |
|
f1oeq1 |
⊢ ( ( log ↾ ℝ+ ) = ( ◡ ( exp ↾ ran log ) ↾ ℝ+ ) → ( ( log ↾ ℝ+ ) : ℝ+ –1-1-onto→ ℝ ↔ ( ◡ ( exp ↾ ran log ) ↾ ℝ+ ) : ℝ+ –1-1-onto→ ℝ ) ) |
17 |
14 15 16
|
mp2b |
⊢ ( ( log ↾ ℝ+ ) : ℝ+ –1-1-onto→ ℝ ↔ ( ◡ ( exp ↾ ran log ) ↾ ℝ+ ) : ℝ+ –1-1-onto→ ℝ ) |
18 |
13 17
|
mpbir |
⊢ ( log ↾ ℝ+ ) : ℝ+ –1-1-onto→ ℝ |