Step |
Hyp |
Ref |
Expression |
1 |
|
reefiso |
⊢ ( exp ↾ ℝ ) Isom < , < ( ℝ , ℝ+ ) |
2 |
|
isocnv |
⊢ ( ( exp ↾ ℝ ) Isom < , < ( ℝ , ℝ+ ) → ◡ ( exp ↾ ℝ ) Isom < , < ( ℝ+ , ℝ ) ) |
3 |
1 2
|
ax-mp |
⊢ ◡ ( exp ↾ ℝ ) Isom < , < ( ℝ+ , ℝ ) |
4 |
|
dfrelog |
⊢ ( log ↾ ℝ+ ) = ◡ ( exp ↾ ℝ ) |
5 |
|
isoeq1 |
⊢ ( ( log ↾ ℝ+ ) = ◡ ( exp ↾ ℝ ) → ( ( log ↾ ℝ+ ) Isom < , < ( ℝ+ , ℝ ) ↔ ◡ ( exp ↾ ℝ ) Isom < , < ( ℝ+ , ℝ ) ) ) |
6 |
4 5
|
ax-mp |
⊢ ( ( log ↾ ℝ+ ) Isom < , < ( ℝ+ , ℝ ) ↔ ◡ ( exp ↾ ℝ ) Isom < , < ( ℝ+ , ℝ ) ) |
7 |
3 6
|
mpbir |
⊢ ( log ↾ ℝ+ ) Isom < , < ( ℝ+ , ℝ ) |